ORGANIC
LETTERS
2012
Vol. 14, No. 3
796–799
Ligand-Free Ni-Catalyzed Reductive
Cleavage of Inert CarbonꢀSulfur Bonds
Nekane Barbero and Ruben Martin*
Institute of Chemical Research of Catalonia (ICIQ), Av Paısos Catalans 16, 43007,
¨
Tarragona, Spain
Received December 13, 2011
ABSTRACT
A catalytic reductive cleavage of C(sp2)ꢀ and C(sp3)ꢀSMe bonds under ligandless conditions is presented. The method is characterized by its
wide scope and high chemoselectivity profile including challenging substrate combinations, allowing the design of orthogonal and site-selectivity
approaches.
The discovery of new catalytic methods for activating
inert molecular bonds constitutes one of the most active
areas of research in modern organic chemistry.1 These
methods provide unique strategies for converting rather
ubiquitous and unreactive motifs into valuable molecules.
Despite recent advances, particularly in the field of CꢀH
bond functionalization, the development of procedures for
Cꢀheteroatom bond functionalization has received much
less attention.2,3
Although carbonꢀsulfur bonds are inherently disposed
to cross-coupling reactions, the strong affinity of sulfur
atoms to metal centers constitutes a significant barrier for
further functionalization.3,4 Among all aryl sulfides, the
use of aryl methyl thioethers (ArSMe) would be especially
attractive as coupling counterparts due to the fact that (a)
ArSMe are the simplest derivatives from thiophenols
(ArSH) and (b) the use of ArSMe electrophiles is much
more atom economical than other ArSR motifs (R¼Me)
describedin the literature.5 Still, however, the development
of coupling reactions with unactivated CꢀSMe bonds6 has
been less explored, and few examples have been reported in
this regard.7
Particularly interesting would be the development of a
catalytic reductive cleavage of unactivated CꢀSMe bonds,
thus opening up the possibility of using aryl sulfides as
temporary removable directing groups8 in organic synthe-
sis (Scheme 1). To the best of our knowledge, such a
procedure can only be carried out with stoichiometric
amounts of highly reactive Grignard reagents possess-
ing β-hydrogens9 or with a large excess of Raney Nickel10
as reducing agents (Scheme 1, path a), thus drastically
(1) Murai, S. Activation of unreactive bonds and organic synthesis.
Topics in Organometallic Chemistry; Springer-Verlag: Berlin, 1999.
(2) For recent reviews on CꢀO bond activation: (a) Rosen, B. M.;
Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg,
N. K.; Percec, V. Chem. Rev. 2011, 111, 1346. (b) Li, B.-J.; Yu, D.-G.;
Sun, C.-L.; Shi, Z.-J. Chem.;Eur. J. 2011, 17, 1728. (c) McGlacken,
G. P.; Clarke, S. L. ChemCatChem 2011, 3, 1260. (d) Tobisu, M.;
Chatani, N. ChemCatChem 2011, 3, 1410.
(6) For selected coupling reactions of activated CꢀSMe bonds: (a)
Graham, T. H.; Liu, W.; Shen, D.-M. Org. Lett. 2011, 13, 6232. (b)
Melzig, L.; Metzger, A.; Knochel, P. Chem.;Eur. J. 2011, 17, 2948. (c)
Melzig, L.; Metzger, A.; Knochel, P. J. Org. Chem. 2010, 75, 2131. (d)
Begouin, J.-M.; Rivard, M.; Gosmini, C. Chem. Commun. 2010, 5972.
(7) Isolated examples when coupling unactivated CꢀSMe bonds with
stoichiometric and highly reactive Grignard reagents have been de-
scribed: (a) Kanemura, S.; Kondoh, A.; Yorimitsu, H.; Oshima, K.
Synthesis 2008, 2659. (b) Wenkert, E.; Ferreira, T. W.; Michelotti, E. L.
J. Chem. Soc., Chem. Commun. 1979, 637.
(8) Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450.
(9) For desulfurative procedures of CꢀSMe bonds using stochio-
metric and highly reactive Grignard reagents as reducing agents: (a)
Wenkert, E.; Hanna, J. M.; Leftin, M. H.; Michelotti, E. L.; Potes, K. T.;
Usifer, D. J. Org. Chem. 1985, 50, 1125. (b) Wenkert, E.; Ferreira, T. W.
J. Chem. Soc., Chem. Commun. 1982, 840.
(3) For a recent review on CꢀS bond activation: Dubbaka, S. R.;
Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674.
(4) For a review dealing with thioether coordination to transition
metals, see: Murray, S. G.; Hartley, F. R. Chem. Rev. 1981, 81, 365.
(5) For selected catalytic CꢀSR bond-activation reactions (R ¼ Me):
(a) Ishizuka, K.; Seike, H.; Hatakeyama, T.; Nakamura, M. J. Am.
Chem. Soc. 2010, 132, 13117. (b) Itami, K.; Higashi, S.; Mineno, M.;
Yoshida, J.-I. Org. Lett. 2005, 7, 1219. (c) Cho, C.-H.; Yun, H.-S.; Park,
K. J. Org. Chem. 2003, 68, 3017. (d) Srogl, J.; Liu, W.; Marshall, D.;
Liebeskind, L. S. J. Am. Chem. Soc. 1999, 121, 9449. (e) Tseng, H.-R.;
Lee, C.-F.; Yang, L.-M.; Luh, T.-Y. J. Org. Chem. 1999, 64, 8582.
(10) Mozingo, R.; Wolf, D. E.; Harris, S. A.; Folkers, K. J. Am.
Chem. Soc. 1943, 65, 1013.
r
10.1021/ol2033306
Published on Web 01/18/2012
2012 American Chemical Society