4 R. Pottgen, W. Honle and H. G. v. Schnering, Phosphides, Solid
¨ ¨
State Chemistry, in Encyclopedia of Inorganic Chemistry, ed.
R. B. King, Wiley, Chichester, UK, 2nd edn, 2005, vol. VIII,
p. 4255; and references therein.
5 (a) C. A. Dyker and N. Burford, Chem.–Asian J., 2008, 3, 28;
(b) J. J. Weigand, N. Burford, A. Decken and A. Schulz, Eur. J.
Inorg. Chem., 2007, 4868.
6 H. G. v. Schnering, Angew. Chem., Int. Ed. Engl., 1981, 20, 33.
7 (a) S. Go
´
255, 1360; (b) S. Go
´
mez-Ruiz and E. Hey-Hawkins, Coord. Chem. Rev., 2011,
mez-Ruiz, R. Frank, B. Gallego, S. Zahn,
B. Kirchner and E. Hey-Hawkins, Eur. J. Inorg. Chem., 2011, 739;
(c) R. Waterman, Curr. Org. Chem., 2008, 12, 1322; and references
therein.
8 M. Scheer, S. Gremler, E. Herrmann, U. Grunhagen, M. Dargatz
¨
and E. Kleinpeter, Z. Anorg. Allg. Chem., 1991, 600, 203;
M. Scheer, S. Gremler, E. Herrmann, M. Dargatz and
H.-D. Schadler, Z. Anorg. Allg. Chem., 1993, 619, 1047.
¨
9 G. Fritz, K. Stoll, W. Honle and H. G. v. Schnering, Z. Anorg.
¨
Allg. Chem., 1986, 544, 127.
Fig. 2 ORTEP plot of the molecular structures of compounds
(a) 9 and (b) 10. Thermal ellipsoids are drawn at 50% probability
(hydrogen atoms are omitted for clarity). Selected bond lengths [A]
and angles [1]: 9: P1–Fe 2.2765(7), P1–P2 2.2384(9), P2–P3 2.2133(9),
P2–N31 1.736(2), N31–N32 1.381(3), P2–P1–Fe 105.65(3),
N31–P2–P3 109.55(8); N31–P2–P1 100.51(8), P3–P2–P1 106.72(4);
10: P1–Fe 2.284(1), P1–P2 2.221(1), P2–P4 2.193(1), P2–P3 2.210(1),
N31–N32 1.381(3), P2–P1–Fe 108.76(4), P4–P2–P3 127.34(5);
P4–P2–P1 104.08(5), P3–P2–P1 106.88(5).
10 D. R. Armstrong, N. Feeder, A. D. Hopkins, M. J. Mays,
D. Moncrieff, J. A. Wood, A. D. Woods and D. S. Wright, Chem.
Commun., 2000, 2483.
11 L. Maier, Helv. Chim. Acta, 1966, 49, 1119.
characterized example of a metal complex of an iso-tetraphosphane.
In both complexes, the Fe(CO)4 moiety coordinates to a
terminal phosphorus atom. This mode of coordination was
reported to be thermodynamically favourable over the coordi-
nation of the central phosphorus atom for the related triphos-
phane complex [Ph2PP(Ph)P(Ph)2Fe(CO)4].18b Notably, the
polyphosphorus ligands occupy the axial position of the pseudo
trigonal bipyramidal coordination sphere of the iron atom.
Apparently the coordination site is determined by electronic
rather than steric factors which may be indicative of the low
p-acceptor properties of the polyphosphane ligands.21,18c
In summary, a highly efficient method affords symmetric
tri- and iso-tetraphosphanes in very high yields. This simple
protocol should allow for the systematic development of a
plethora of other tri- and iso-tetraphosphanes with a highly
diverse substitution pattern. We are currently investigating
this type of P–P bond formation using pyrazolyl-substituted
phosphanes as easily accessible P1 units in combination with a
series of primary and secondary phosphanes to access hitherto
unknown structural motives in polyphosphane chemistry. In
addition, this simple approach allows a systematic investiga-
tion of the coordination chemistry of polyphosphane ligands.
We are especially interested in using triphosphanes and
iso-tetraphosphanes as polydentate, chelating ligands and
explore their properties in the field of homogenous catalysis.
We gratefully acknowledge the FCI (fellowship for K.-O.F.),
12 Selected examples: (a) G. Fritz, E. Matern, H. Krautscheid,
R. Ahlrichs, J. W. Olkowska and J. Pikies, Z. Anorg. Allg. Chem.,
1999, 625, 1604; (b) A. H. Cowley, S. M. Dennis, S. Kamepalli,
C. J. Carrano and M. R. Bond, J. Organomet. Chem., 1997,
529, 75; (c) A. Wisniewska, K. Baranowska, E. Matern and
J. Pikies, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008,
64, o1364; (d) C. Jones, P. C. Junk and T. C. Williams, J. Chem.
Soc., Dalton Trans., 2002, 2417; (e) G. Fritz, T. Vaahs and
M. Jarmer, Z. Anorg. Allg. Chem., 1990, 589, 12;
(f) C. E. Averre, M. P. Coles, I. R. Crossley and I. J. Day, Dalton
Trans., 2012, 41, 278; (g) N. Nagahora, T. Sasamori, N. Takeda
and N. Tokitoh, Organometallics, 2005, 24, 3074; (h) E. Urnezius,
K.-C. Lam, A. L. Rheingold and J. D. Prostasiewicz,
J. Organomet. Chem., 2001, 630, 193.
13 (a) E. Niecke, R. Ruger and B. Krebs, Angew. Chem., Int. Ed. Engl.,
¨
1982, 21, 544; (b) K. Jurkschat, C. Mugge, A. Tzschach, W. Uhlig and
A. Zschunke, Tetrahedron Lett., 1982, 23, 1345; (c) M. R. Mazieres,
K. Rauzy, J. Bellan, M. Sanchez, G. Pfister-Guillouzo and A. Senio,
Phosphorus, Sulfur Silicon Relat. Elem., 1993, 76, 45.
14 (a) E. E. Nifantiev, M. K. Grachev and S. Y. Burmistrov, Chem.
Rev., 2000, 100, 3755; for oligonucleotide syntheses and mecha-
nistic studies see: (b) B. H. Dahl, J. Nielsen and O. Dahl, Nucleic
Acids Res., 1987, 15, 1729; (c) M. F. Moore and S. L. Beaucage,
J. Org. Chem., 1985, 50, 2019; (d) S. Berner, K. Hulegger and
H. Seliger, Nucleic Acids Res., 1989, 17, 853.
15 (a) J. J. Weigand, K.-O. Feldmann, A. K. C. Echterhoff,
A. W. Ehlers and K. Lammertsma, Angew. Chem., Int. Ed.,
2010, 49, 6178; (b) K.-O. Feldmann, S. Schulz, F. Klotter and
J. J. Weigand, ChemSusChem, 2011, 4, 1805.
¨
16 Details of the synthesis, isolation and characterization of 1, 6, 9,
and 10 are available in the ESIz.
17 The unusually high multiplicity has been shown to originate
from the inapplicability of the secular approximation of the spin
hamiltonian rather than from magnetic inequivalence for a related
triphosphane by Crossley et al. (ref. 12f).
the Graduate School of Chemistry of the WWU in Munster, the
¨
DFG (WE 4621/2-1) and the European PhosSciNet (CM0802)
for funding. J.J.W. thanks Prof. F. E. Hahn for his generous
support and Prof. R. Wolf for helpful discussions.
18 (a) M. Scheer, C. Kuntz, M. Stubenhofer, M. Zabel and A. Y.
Timoshkin, Angew. Chem., Int. Ed., 2010, 49, 188; (b) M. Baacke,
S. Morton, G. Johannsen, N. Weferling and O. Stelzer, Chem. Ber.,
1980, 113, 1328; (c) W. S. Sheldrick, S. Morton and O. Stelzer,
Z. Anorg. Allg. Chem., 1981, 475, 232; (d) O. Stelzer, S. Morton and
W. S. Sheldrick, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst.
Chem., 1981, 37, 439; (e) M. Scheer, S. Gremler, E. Herrmann and
P. G. Jones, J. Organomet. Chem., 1991, 414, 337.
19 G. Bor, Inorg. Chim. Acta, 1967, 1, 81; see also A. F. Clifford and
R. V. Parish, J. Chem. Soc., 1960, 1440; A. F. Clifford and A. K.
Mukherjee, Inorg. Chem., 1963, 2, 151; M. Bigorgne, J. Organomet.
Chem., 1970, 24, 211.
Notes and references
1 K. B. Dillon, F. Mathey and J. F. Nixon, Phosphorus the Carbon
Copy: From Organophosphorus to Phospha-organic Chemistry, Wiley,
Chichester, 1998.
2 Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies,
CRC Press, Boca Raton, 2007.
3 (a) M. Baudler, Angew. Chem., Int. Ed. Engl., 1982, 21, 492;
(b) M. Baudler, Angew. Chem., Int. Ed. Engl., 1987, 26, 419;
(c) M. Baudler and K. Glinka, Chem. Rev., 1993, 93, 1623;
(d) M. Baudler and K. Glinka, Chem. Rev., 1994, 94, 1273.
20 C. Sarmah, M. Borah and P. Das, Appl. Organomet. Chem., 2011,
25, 552.
21 H. Haas and R. K. Sheline, J. Chem. Phys., 1967, 47, 2996.
c
4298 Chem. Commun., 2012, 48, 4296–4298
This journal is The Royal Society of Chemistry 2012