P–C Cross-Coupling Onto Enamides
ano, S.-I. Matsunaga, G. Iwasaki, A. Ogawa, K. Hayakawa,
Tetrahedron Lett. 1997, 38, 3543–3546; d) F. Alonso, I. P. Belet-
skaya, M. Yus, Chem. Rev. 2004, 104, 3079–3160; e) R. H.
Hetzer, H.-J. Gais, G. Raabe, Synthesis 2008, 1126–1132; f) B.
Join, D. Mimeau, O. Delacroix, A.-C. Gaumont, Chem. Com-
mun. 2006, 3249–3251.
that this methodology makes it possible, for the first time,
to synthesize a range of α-enamido phosphane derivatives
from widely available ketones. This strategy may thus ef-
ficiently provide access to phosphanyl heterocyclic com-
pounds based on privileged substructures with potential
biological interest. Further experiments by using chiral cat-
alysts are also currently under investigation.
[7]
a) B. H. Lipshutz, D. J. Buzard, C. S. Yun, Tetrahedron Lett.
1999, 40, 201–204; b) S. R. Gilbertson, Z. Fu, G. Starkey, Tet-
rahedron Lett. 1999, 40, 8509–8512; c) D. J. A. Ager, M. B.
East, A. Eisenstadt, S. A. Laneman, Chem. Commun. 1997,
2359–2360; d) D. Julienne, J.-F. Lohier, O. Delacroix, A.-C.
Gaumont, J. Org. Chem. 2007, 72, 2247–2250; e) I. P. Belets-
kaya, M. A. Kazankova, Russ. J. Org. Chem. 2002, 38, 1391–
1430; f) K. Vandyck, B. Matthys, M. Willen, K. Robeyns, L.
Van Meervelt, J. Van der Eycken, Org. Lett. 2006, 8, 363–366;
g) S. R. Gilbertson, Z. Fu, Org. Lett. 2001, 3, 161–164; h)
M. A. Kazankova, E. A. Chirkov, A. N. Kochetkov, I. V. Efi-
mova, I. P. Beletskaya, Tetrahedron Lett. 1999, 40, 573–576; i)
D. N. Kazulkin, A. N. Ryabov, V. V. Izmer, A. V. Churakov,
I. P. Beletskaya, C. J. Burns, A. Z. Voskoboynikov, Organome-
tallics 2005, 24, 3024–3035; j) M. O. Shulyupin, E. A. Chirkov,
M. A. Kazankova, I. P. Beletskaya, Synlett 2005, 658–660.
a) D. Mousset, I. Gillaizeau, A. Sabatié, P. Bouyssou, G. Coud-
ert, J. Org. Chem. 2006, 71, 5993–5999; b) E. Claveau, I. Gillai-
zeau, A. Bruel, G. Coudert, J. Org. Chem. 2007, 72, 4832–4836;
c) M. Chaignaud, I. Gillaizeau, N. Ouhamou, G. Coudert, Tet-
rahedron 2008, 64, 8059–8066; d) E. Claveau, I. Gillaizeau, J.
Kalinowska, P. Bouyssou, G. Coudert, J. Org. Chem. 2009, 74,
2911–2914; e) D. Mousset, R. Rabot, P. Bouyssou, G. Coudert,
I. Gillaizeau, Tetrahedron Lett. 2010, 51, 3987–3990. See also:
f) E. G. Occhiato, Mini-Rev. Org. Chem. 2004, 1, 149–162; g)
D. Gauthier, S. Beckendorf, T. M. Gogsig, A. T. Lindhardt, T.
Skrydstrup, J. Org. Chem. 2009, 74, 3536–3539; h) H. Fuwa,
Synlett 2011, 6–29; i) B. J. Li, D. G. Yu, C. L. Sun, Z.-J. Shi,
Chem. Eur. J. 2011, 17, 1728–1759.
Experimental Section
General Procedure for the Pd-Catalyzed P–C Cross-Coupling: Un-
der an atmosphere of argon, enol phosphate 2 (120 mg, 0.30 mmol)
was dissolved in distilled acetonitrile (2.5 mL) and secondary phos-
phane–borane 3a, 3b, or 3c (0.60 mmol) was added. Then, the con-
tents of the flask were evacuated and backfilled with argon three
times. After that, dppfPdCl2 (0.014 mmol) and Cs2CO3
(0.60 mmol) were introduced, and the degassing procedure was re-
peated. The reaction was carried out in an oil bath (65–70 °C) for
the appropriate time. The reaction mixture was filtered through
Celite, and the filtrate was evaporated. The crude product was puri-
fied by flash column chromatography to yield expected alkenyl-
phosphanes 4a–l.
[8]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and crystallographic data.
Acknowledgments
This work and the postdoctoral grant for A. B. were funded by the
Agence Nationale de la Recherche (grant ANR-07-blan-0292–04),
which is gratefully acknowledged. The French Embassy in Poland
is acknowledged for providing a cotutelle PhD grant to M. C.
[9]
a) A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners,
Chem. Rev. 2010, 110, 4023–4078; b) D. Julienne, O. Delacroix,
A.-C. Gaumont, Phosphorus Sulfur Silicon Relat. Elem. 2009,
184, 846–856; c) K. Bourumeau, A.-C. Gaumont, J.-M. Denis,
J. Organomet. Chem. 1997, 529, 205–213.
[10]
O. Navarro, Y. Oonishi, R. A. Kelly, E. D. Stevens, O. Briel,
S. P. Nolan, J. Organomet. Chem. 2004, 689, 3722–3727.
See ref.[1f]: C. Darcel, J. Uziel, S. Jugé, pp. 1211–1233.
[1] a) W. Tang, X. Zang, Chem. Rev. 2003, 103, 3029–3069; b) H.
Shimidzu, I. Nagasaki, T. Saito, Tetrahedron 2005, 61, 5405–
5432; c) R. Gómez Arrayás, J. Adrio, J. C. Carretero, Angew.
Chem. 2006, 118, 7836; Angew. Chem. Int. Ed. 2006, 45, 7674–
7715; d) C. Jäkel, R. Paciello, Chem. Rev. 2006, 106, 2912–
2942; e) W. Zhang, Y. Chi, X. Zhang, Acc. Chem. Res. 2007,
40, 1278–1290; f) A. Börner (Ed.), Phosphorous Ligands in
Asymmetric Catalysis, Wiley-VCH, Weinheim, 2008, vol. 3; g)
G. C. Hargaden, P. J. Guiry, Chem. Rev. 2009, 109, 2505–2550.
[2] J. L. Methot, W. R. Roush, Adv. Synth. Catal. 2004, 346, 1035–
1050.
[11]
[12]
a) A. Duraud, O. Jacquet, J.-C. Fiaud, R. Guillot, M. Toffano,
ChemCatChem 2011, 3, 883–886; b) F. Guillen, M. Rivard, M.
Toffano, J.-Y. Legros, J.-C. Daran, J.-C. Fiaud, Tetrahedron
2002, 58, 5895–5904.
It should be noted that attempts with five-membered ring lac-
tams have been undertaken for the P–C coupling, however,
without success.
a) F. Chaux, S. Frynas, H. Laureano, C. Salomon, G. Morata,
M.-L. Auclair, M. Stephan, R. Merdès, P. Richard, M.-J. On-
del, J. C. Henry, J. Bayardon, C. Darcel, S. Jugé, C. R. Chim.
2010, 13, 1213–1226; b) C. Bauduin, D. Moulin, K. El Bachir,
C. Darcel, S. Jugé, J. Org. Chem. 2003, 6811, 4293–4301.
Enantiomeric excess values and purities were determined by
chiral SFC with a Waters Investigator SFC equipped with a
Waters 2998 Photodiode Array detector with high-pressure re-
sistant cell. The column was a Lux Cellulose-1 (250ϫ4.6 mm,
5 μm) from Phenomenex. Operating conditions were always
isocratic, with methanol or ethanol modifier. Flow rate =
3 mL/min, outlet pressure = 15 MPa, column oven temperature
= 25 °C; a) C. West, E. Lesellier, J. Chromatogr. A 2005, 1087,
64–76; b) C. West, C. A. Bouet, I. Gillaizeau, G. Coudert, M.
Lafosse, E. Lesellier, Chirality 2010, 22, 242–251.
[13]
[14]
[3] a) D. S. Glueck, Chem. Eur. J. 2008, 14, 7108–7117; b) J. S.
Harvey, V. Gouverneur, Chem. Commun. 2010, 46, 7477–7485.
[4] S. Jugé, Phosphorus Sulfur Silicon Relat. Elem. 2008, 183, 233–
248.
[5] a) M. Toffano, C. Dobrota, J.-C. Fiaud, Eur. J. Org. Chem.
2006, 650–656; b) A. C. Gaumont; M. Gulea in Science of Syn-
thesis Houben-Weyl Methods of Molecular Transformations,
Thieme, Stuttgart, 2007, vol. 33, pp. 711–724; c) F. M. J. Tappe,
V. T. Trepohl, M. Oestreich, Synthesis 2010, 3037–3216; d)
D. S. Glueck, Top. Organomet. Chem. 2010, 31, 65–100; e) M.
Toffano “Applications of Tricoordinate Phosphorus Com-
pounds in Heterogeneous Catalysis” in Science of Synthesis
(Ed.: F. Mathey), Thieme, Stuttgart, 2009, vol. 42, ch. 10, p.
347; f) D. G. Gilheany, C. M. Mitchell in Chemistry of Organo-
phosphorus Compounds (Ed.: F. R. Hartley), Wiley, Chichester,
U.K., 1990, vol. 1, pp. 151–190.
[15]
[16]
a) Substituents that allow for delocalization of the lone pair of
electrons on the phosphorus atom into the neighboring π sys-
tems also decrease the inversion barrier; b) T. Oshiki, T. Imam-
oto, J. Am. Chem. Soc. 1992, 114, 3975–3977; c) G. Kumaras-
[6] a) D. Julienne, O. Delacroix, A.-C. Gaumont, Curr. Org. Chem.
2010, 14, 457–482; b) A. Duraud, M. Toffano, J.-C. Fiaud, Eur.
J. Org. Chem. 2009, 4400–4403; c) I. Mori, Y. Kimura, T. Nak-
Eur. J. Org. Chem. 2012, 1101–1106
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1105