Journal of the American Chemical Society
Article
(3) Song, C. Catal. Today 2003, 86, 211.
Buslaeva, T. M.; Romm, I. P. Russ. J. Coord. Chem. 2001, 27, 585.
(c) Yang, Z.; Smetana, A. B.; Sorensen, C. M.; Klabunde, K. J. Inorg.
Chem. 2007, 46, 2427. (d) Schneider, I.; Horner, M.; Olendzki, R. N.;
Strahle, J. Acta Crystallogr. 1993, C49, 2091.
(27) (a) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P.
Organometallics 2006, 25, 1970. (b) Ananikov, V. P.; Orlov, N. V.;
Beletskaya, I. P. Organometallics 2007, 26, 740.
(28) Sheldrick, G. M. SADABS; Bruker AXS Inc.: Madison, WI, 1997.
(29) Sheldrick, G. M. SHELXTL-97, Version 5.10; Bruker AXS Inc.:
Madison, WI, 1997.
(30) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Lee, C.; Yang,
W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Becke, A. D. J. Chem.
Phys. 1993, 98, 5648.
(4) Babich, I. V.; Moulijn, J. A. Fuel 2003, 82, 607.
(5) Sulfur Production Report, U.S. Geological Survey, January 2011;
(6) Metal-catalyzed Z−H additions: (a) Beletskaya, I. P.; Ananikov,
V. P. Chem. Rev. 2011, 111, 1596. (b) Bichler, P.; Love, J. A. Top.
Organomet. Chem. 2010, 31, 39. (c) Weiss, C. J.; Marks, T. J. Dalton
Trans. 2010, 39, 6576. (d) Ogawa, A. J. Organomet. Chem. 2000, 611,
463. (e) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Kambe, N.;
Sonoda, N. J. Am. Chem. Soc. 1992, 114, 5902. (f) Ishii, A.; Kamon, H.;
Murakami, K.; Nakata, N. Eur. J. Org. Chem. 2010, 1653. (g) Ishii, A.;
Nakata, N.; Uchiumi, R.; Murakami, K. Angew. Chem., Int. Ed. 2008,
47, 2661. (h) Nakata, N.; Yamaguchi, Y.; Ishii, A. J. Organomet. Chem.
2010, 695, 970.
(7) Sheldon, R. A. Pure Appl. Chem. 2000, 72, 1233.
(8) Anastas, P. T.; Warner, J. C. Green Chemistry; Theory and Practice;
Oxford University Press: New York, 1998.
(9) (a) Baeckvall, J.-E.; Ericsson, A. J. Org. Chem. 1994, 59, 5850.
(b) Kuniyasu, H.; Ogawa, A.; Sato, K.-I.; Ryu, I.; Sonoda, N.
Tetrahedron Lett. 1992, 38, 5525. (c) Kamiya, I.; Nishinaka, E.; Ogawa,
A. J. Org. Chem. 2005, 70, 696.
(31) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,
54, 724. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys.
1972, 56, 2257.
(32) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
(b) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.;
Wadt, W. R. J. Chem. Phys. 1985, 82, 299. (d) Dunning, T. H., Jr.; Hay,
P. J. In Modern Theoretical Chemistry; Schaefer, H. F., III, Ed.; Plenum:
New York, 1976; Vol. 3, pp 1−28.
(33) (a) Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2009,
11, 10757. (b) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. J. Mol.
Catal. A: Chem. 2010, 324, 104.
(34) (a) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
(b) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.
(35) Frisch, M. J. ;et al.et al. Gaussian 09; Gaussian, Inc.: Pittsburgh
PA, 2009.
(10) Akelah, A.; Moet, A. Functionalized Polymers and Their
Applications; Chapman and Hall: New York, 1990.
(11) Paquette, L. A., Ed. In Sulfur-Containing Reagents; Wiley-
Blackwell: New York, 2010.
(12) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev.
2004, 104, 2239.
(13) Patai, S.; Rappoport, Z., Eds. In The Chemistry of Organic
Selenium and Tellurium Compounds; John Wiley and Sons: New York,
1986−1987; Vols. 1−2.
(14) (a) Ananikov, V. P.; Beletskaya, I. P. Dalton Trans. 2011, 40,
4011. (b) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P.; Khrustalev,
V. N.; Antipin, M. Yu.; Timofeeva, T. V. J. Am. Chem. Soc. 2007, 129,
7252.
(15) Ananikov, V. P.; Malyshev, D. A.; Beletskaya, D. A.;
Aleksandrov, G. G.; Eremenko, I. L. J. Organomet. Chem. 2003, 679,
162.
(16) Ananikov, V. P.; Malyshev, D. A.; Beletskaya, I. P.; Aleksandrov,
G. G.; Eremenko, I. L. Adv. Synth. Catal. 2005, 347, 1993.
(17) Jin, Z.; Xu, B.; Hammond, G. B. Eur. J. Org. Chem. 2010, 168.
(18) Trofimov, B. A. Curr. Org. Chem. 2002, 6, 1121.
(19) Perin, G.; Lenardao, E. J.; Jacob, R. G.; Panatieri, R. B. Chem.
̃
Rev. 2009, 109, 1277.
(20) The concentration of phosphine ligands was adjusted to stabilize
the complexes in solution, and 31P NMR chemical shifts of the
complexes (δ = 98.8 ppm, 101.2 ppm) were identified according to
NMR analysis described earlier: Ananikov, V. P.; Zalesskiy, S. S.;
Kachala, V. V.; Beletskaya, I. P. J. Organomet. Chem. 2011, 696, 400.
(21) Phosphine or other strong ligands occupy vacancies in the
coordination sphere of the metal and prevent formation of polymeric
metal species.
(22) Complete set of calculations for n = 2, 3, 4, 5, 6, 7, 8, and 9
(chain structures) and n = 3, 4, 5, 6, 7, 8, and 9 (cyclic structures) with
both Z = S and Se were carried out; see Supporting Information for
details.
(23) Calculated energy surface of mononuclear complexes I−IV is
shown in Scheme S2 for comparison (see Supporting Information);
this pathway is not discussed in details here.
(24) Coordination of alkyne to the metal center was calculated to be
exothermic by −1 to −3 kcal/mol on the ΔG surface and by −11 to
−14 kcal/mol on the ΔE and ΔH surfaces. Thus, it can be considered
as a weakly bound π-complex on the ΔG surface. See Table S11 in the
Supporting Information for details.
(25) Note also, that reductive elimination involving chelate ligand
was not observed: Ananikov, V. P.; Mitchenko, S. A.; Beletskaya, I. P. J.
Organomet. Chem. 2000, 604, 290.
(26) (a) Spek, A. L. Cambridge Crystallographic Database; refcode
AFACUG, 2007. (b) Stash, A. I.; Perepelkova, T. I.; Noskov, Yu. G.;
6649
dx.doi.org/10.1021/ja210596w | J. Am. Chem. Soc. 2012, 134, 6637−6649