Y. Tanaka et al. / Journal of Fluorine Chemistry 137 (2012) 99–104
103
of TBAF (15 mol%, 15 mL, 1.5 mmol). The reaction mixture was
brought to room temperature and stirred for 3 h. The resulting
silyloxy compound was then hydrolyzed with aqueous HCl. Then,
the mixture was extracted with ether (15 mL Â 3), dried over
anhydrous Na2SO4, and concentrated in vacuo. The residue was
purified by silica gel column chromatography (eluent: hexane/
EtOAc = 7/1) to give 1,1,1-trifluoro-11-dodecen-2-ol (2r) (1.77 g,
7.43 mmol, 74%).
1H), 3.32 (m, 1H), 7.15 (d, J = 8.39 Hz, 2H), 7.38 (d, J = 8.39 Hz, 2H);
19F NMR (CDCl3, CCl3F)
d
À78.35 (s, 3F); 13C NMR (CDCl3)
d 16.11,
31.65, 34.75, 37.89, 43.17, 116.12 (q, J = 292.87 Hz), 120.49,
125.84, 135.18, 150.01, 195.13 (q, J = 33.60 Hz); IR (neat) 2965,
2871, 1759, 1518, 1462, 1365, 1290, 1268, 1203, 1153, 1109 cmÀ1
;
HRMS (FAB+) Calcd for C15H19F3O (M+): 272.1388, Found
272.1378.
2r: 1H NMR (CDCl3)
d
1.30–1.38 (m, 12H), 1.53–1.71 (m, 2H),
3.6. 2,2,3,3,4,4,5,5,5-Nonafluoro-1-(4-methoxyphenyl)-1-pentanone
2.04 (q, J = 7.10 Hz, 2H), 2.32 (br s, 1H), 3.84–3.94 (m, 1H), 4.93
(dm, J = 9.99 Hz, 1H), 4.99 (ddt, J = 16.78, 1.40, 1.40 Hz, 1H), 5.81
(1u)
(ddt, J = 16.78, 9.99, 6.39 Hz, 1H); 13C NMR (CDCl3)
d
25.23, 29.22,
29.40, 29.52, 29.67, 29.68, 29.90, 70.86 (q, J = 30.86 Hz), 114.48,
125.56 (q, J = 281.02 Hz), 126.96, 139.53; 19F NMR (CDCl3, CFCl3)
Yield: 89%; 1H NMR (CDCl3)
d 3.90 (s, 3H), 6.98 (d, J = 8.19 Hz,
2H), 8.06 (d, J = 8.19 Hz, 2H); 19F NMR (CDCl3, CFCl3)
d
À125.63 (s,
d
2F), À122.34 (s, 2F), À113.02 (s, 2F), À81.44 (d, J = 9.78 Hz, 3F); 13
C
À80.55 (d, J = 7.10 Hz, 3F); IR (neat) 3376, 3078, 2928, 2857, 1641,
1466, 1392, 1279, 1172, 994, 910, 847, 723, 695 cmÀ1; HRMS (EI)
Calcd for (M+) C12H21F3O 238.1544, Found 238.1544.
NMR (CDCl3) d 55.96, 105.84–114.39 (m, 3C), 114.71, 117.75 (qt,
J = 285.70, 33.08 Hz), 124.75 (t, J = 2.06 Hz), 133.33, 165.80, 181.70
(t, J = 25.20 Hz); IR (neat) 3016, 2975, 2943, 2848, 1697, 1603,
1514, 1465, 1428, 1356, 1317, 1237, 1137 cmÀ1; HRMS (FAB+)
Calcd for C12H7F9O2 (M+): 354.0302, Found 354.0302.
3.3. 1,1,1-Trifluoro-4-(4-tert-butylphenyl)-3-methylbutan-2-ol (2q)
Yield: 95% (d.r. ca. 56:44) 1H NMR
d
0.85 and 0.92 (d, J = 6.79 and
3.7. 2,2,3,3,4,4,5,5,5-Nonafluoro-1-(4-chlorophenyl)-1-pentanone
d, J = 6.79 Hz, 3H), 1.20 (s, 9H), 2.00–2.15 (m, 1H), 2.25–2.95 (m,
3H), 3.62–3.77 (m, 1H), 6.99 and 7.01 (d, J = 2.40 Hz and d,
J = 2.60 Hz, 2H), 7.20 and 7.22 (d, J = 2.40 Hz and d, J = 2.60 Hz, 2H);
(1v)
Yield: 89%; 1H NMR (CDCl3)
J = 8.99 Hz, 2H); 19F NMR
À125.71 to À125.63 (m, 2F), À122.24 to
À122.33 (m, 2F), À113.48 (t, J = 24.07 Hz, 2F), À81.40 (t,
J = 19.55 Hz, 3F); 13C NMR
105.81–114.25 (m, 3C), 117.63 (qt,
J = 287.65, 33.03 Hz), 129.87, 130.17 (t, J = 2.51 Hz), 131.94,
142.84, 182.52 (t, J = 26.05 Hz); IR (neat) 1713, 1590, 1491,
1407, 1356, 1237, 1138 cmÀ1; the molecular ion peak was not
detected in HRMS.
d 7.52 (d, J = 8.99 Hz, 2H), 8.01 (d,
19F NMR (CDCl3, CCl3F)
J = 4.14 Hz, 3F); 13C NMR(CDCl3)
d
À76.33 and À75.55 (d, J = 4.14 Hz, and d,
13.24 and 15.62, 31.69 and
d
d
31.70, 34.70 and 36.42, 35.17 and 37.46, 39.75, 71.68 and 74.15 (q,
J = 29.48 Hz and q, J = 29.22 Hz), 125.63 and 125.82, 125.85 and
125.87 (q, J = 282.96 Hz and q, J = 282.96 Hz), 129.07 and 129.37,
136.69 and 136.74, 149.41 and 149.64; IR (neat) 3348, 2964, 2871,
1911, 1800, 1710, 1662, 1516, 1464, 1364, 1271, 1166 cmÀ1; HRMS
(FAB+), Calcd for C15H21F3O (M+): 274.1544, Found 274.1552.
d
3.8. 2,2,3,3,4,4,5,5,5-Nonafluoro-1-(2-chlorophenyl)-1-pentanone
3.4. Typical procedure for the hypervalent iodine(V)-catalyzed
oxidation
(1w)
Yield: 80%; 1H NMR (CDCl3)
3H); 19F NMR
d 7.35–7.43 (m, 1H), 7.48–7.58 (m,
Method A: a mixture of 2,2,2-trifluoro-1-(4-methoxypheny-
l)ethanol (2c) (0.206 g, 1.0 mmol) and sodium 2-iodobenzene-
sulfonate (8) (as monohydrate, 0.016 g, 0.05 mmol, 5 mol%),
powdered Oxone1 (0.554 g, 0.9 mmol) in CH3CN (5 mL) was
stirred at 90 8C under the atmosphere of air. After stirring for
18 h, the reaction mixture was allowed to cool to room
temperature. The reaction mixture was filtered, being succes-
sively washed with ethyl acetate. The combined filtrates were
washed with water (3Â 10 mL), dried over anhydrous Na2SO4,
and concentrated in vacuo. The residue was purified by silica gel
column chromatography (eluent: hexane/EtOAc = 10/1) to give
2,2,2-trifluoro-1-(4-methoxyphenyl)-1-ethanone (1c) (0.165 g,
0.81 mmol, 81% yield).
d
À125.87 to À125.82 (m, 2F), À122.30 (s, 2F),
À115.54 to À115.45 (m, 2F), À81.45 to À81.43 (m, 3F); 13C NMR
d
106.08–113.24 (m, 3C), 117.62 (qt, J = 287.30, 32.90 Hz), 127.09,
129.31 (t, J = 3.75 Hz), 131.42, 133.05, 133.16, 133.86, 182.25 (t,
J = 28.00 Hz); IR (neat) 1767, 1591, 1438, 1356, 1238, 1138 cmÀ1
;
the molecular ion peak was not detected in HRMS.
References
[1] S. Pulser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320–
330.
[2] D. O’Hagan, Chem. Soc. Rev. 37 (2008) 308–319.
[3] K. Mu¨ ller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886.
[4] K.L. Kirk, J. Fluorine Chem. 127 (2006) 1013–1029.
Method B: a mixture of 1,1,1-trifluoro-undecan-2-ol (2b)
(0.136 g, 0.6 mmol) and 8 (as monohydrate, 0.019 g, 0.06 mmol,
10 mol%), powdered Oxone1 (0.332 g, 0.54 mmol) in CH3NO2
(3 mL) was stirred at 110 8C under the atmosphere of air. After
stirring for 24 h, the reaction mixture was allowed to cool to room
temperature. The reaction mixture was filtered, being successively
washed with ethyl acetate. The combined filtrates were washed
with water (10 mL), dried over anhydrous Na2SO4, and concen-
trated in vacuo. The residue was purified by silica gel column
chromatography (eluent: hexane/EtOAc = 10/1) to give 1,1,1-
trifluoroundecan-2-one (1b) (0.092 g, 0.41 mmol, 68% yield).
[5] J.P. Be´gue´, D. Bonnet-Delpon, J. Fluorine Chem. 127 (2006) 992–1012.
[6] C. Isanbor, D. O’Hagan, J. Fluorine Chem. 127 (2006) 303–319.
[7] R. Paulini, K. Mu¨ller, F. Diederich, Angew. Chem. Int. Ed. 44 (2005) 1788–1805.
[8] J. Nie, H.-C. Guo, D. Cahard, J.A. Ma, Chem. Rev. 111 (2011) 455–529.
´
[9] G. Valero, X. Companyo, R. Rios, Chem. Eur. J. 17 (2011) 2018–2037.
[10] X.-L. Qiu, F.-L. Qing, Eur. J. Org. Chem. (2011) 3261–3278.
[11] C. Bobbio, V. Gouverneur, Org. Biomol. Chem. 4 (2006) 2065–2075.
[12] M. Zanda, New J. Chem. 28 (2004) 1401–1411.
[13] R.P. Singh, G. Cao, R.L. Kirchmeier, J.M. Shreeve, J. Org. Chem. 64 (1999) 2873–
2876.
[14] J.P. Be´gue´, D. Bonnet-Delpon, Tetrahedron 47 (1991) 3207–3258.
[15] X. Creary, J. Org. Chem. 52 (1987) 5026–5030.
[16] D. Mead, A.E. Asata, M. Denny, R.S.H. Lin, Y. Hanzawa, T. Taguchi, A. Yamada, N.
Kobayashi, A. Hosoda, Y. Kobayashi, Tetrahedron Lett. 28 (1987) 259–262.
[17] C.G. Kokotos, C. Baskakis, G. Kokotos, J. Org. Chem. 73 (2008) 8623–8626.
[18] P.G. Gassman, N.J. O’Reilly, J. Org. Chem. 52 (1987) 2481–2490.
[19] H. Uno, S. Okada, T. Ono, Y. Shiraishi, H. Suzuki, J. Org. Chem. 57 (1992) 1504–
1513.
3.5. 1,1,1-Trifluoro-4-(4-tert-butylphenyl)-3-methyl-2-butanone
(1q)
[20] G.K.S. Prakash, A.K. Yudin, Chem. Rev. 97 (1997) 757–786.
[21] R. Krishnamurti, D.R. Bellew, G.K.S. Prakash, J. Org. Chem. 56 (1991) 984–989.
[22] P. Ramaiah, G.K.S. Prakash, Synlett (1991) 643–644.
[23] K. Mikami, Tetrahedron 52 (1996) 85–98.
Yield: 86%; 1H NMR (CDCl3)
9H), 2.68 (dd, J = 13.79, 7.79 Hz, 1H), 3.15 (dd, J = 13.79, 5.99 Hz,
d 1.26 (d, J = 6.79 Hz, 3H), 1.37 (s,