an experimental tool for validating MD simulations of not only
oligosaccharides but also other flexible biomacromolecules such
as intrinsically disordered proteins.
We thank Dr Christian Griesinger (Max-Planck Institute
for Biophysical Chemistry) for useful discussion. This work
was supported by KAKENHI (20107004 and 21370050) of
MEXT and CREST of JST. A part of computational calculation
was performed at Research Center for Computational Science,
Okazaki, Japan.
Notes and references
y Q = rms(Ddcalc ꢁ Ddobs)/rms(Ddobs). Ddcalc is given by following equation;
P
N
i=1
Ddcalc
=
(pi1/12pr3i [Dwax(3cos2Wiꢁ1) + 3/2Dwrh(sin2Wi cos2ji)]),
where pi is the population of each structure (set to 0.0005), N is the
number of each conformers, and (ri, yi, ji) defines the position vector
for conformer i of the nucleus in polar coordinates with respect to the
metal center and principal axis of a Dw tensor.
1 M. R. Wormald, A. J. Petrescu, Y. L. Pao, A. Glithero, T. Elliott
and R. A. Dwek, Chem. Rev., 2002, 102, 371–386.
2 Y. Kamiya, M. Yagi-Utsumi, H. Yagi and K. Kato, Curr. Pharm.
Des., 2011, 17, 1672–1684.
3 E. Fadda and R. J. Woods, Drug Discovery Today, 2010, 15,
596–609.
´
4 K. N. Kirschner, A. B. Yongye, S. M. Tschampel, J. Gonzalez-
Outeirino, C. R. Daniels, B. L. Foley and R. J. Woods, J. Comput.
Chem., 2008, 29, 622–655.
5 R. D. Lins and P. H. Hunenberger, J. Comput. Chem., 2005, 26,
1400–1412.
¨
6 D. Kony, W. Damm, S. Stoll and W. Van Gunsteren, J. Comput.
Chem., 2002, 23, 1416–1429.
7 G. Lipari and A. Szabo, J. Am. Chem. Soc., 1982, 104, 4546–4559.
8 D. D. Boehr, D. McElheny, H. J. Dyson and P. E. Wright, Science,
2006, 313, 1638.
9 O. F. Lange, N. A. Lakomek, C. Fares, G. F. Schroder,
¨
K. F. Walter, S. Becker, J. Meiler, H. Grubmuller, C. Griesinger
¨
and B. L. de Groot, Science, 2008, 320, 1471–1475.
10 C. Tang, C. D. Schwieters and G. M. Clore, Nature, 2007, 449,
1078–1082.
Fig. 2 Conformational ensemble of the GM3 trisaccharide. (a) Snap-
shots of the GM3 trisaccharide from a simulated trajectory super-
imposed on the ring atoms of the Gal residue. All hydrogen atoms are
omitted. Torsion angle density maps of MD trajectories of (b) the
Neu5Ac–Gal linkage and (c) the Gal–Glc linkage. Scattered plots of
torsion angles of (d) the Neu5Ac–Gal linkage and (e) the Gal–Glc
linkage of the ensemble for PCS analysis. The NMR definitions of F
and C were used, namely, for the Neu5Ac–Gal linkage, F =
C1–C2–O03–C03 and C = C2–O03–C03–H03 and for the Gal–Glc
linkage, F = H1–C1–O04–C04 and C = C1–O04–C04–H04.
11 J. Landstrom and G. Widmalm, Carbohydr. Res., 2010, 345,
330–333.
¨
12 S. Ganguly, J. Xia, C. Margulis, L. Stanwyck and C. A. Bush,
Biopolymers, 2011, 95, 39–50.
13 J. Xia, C. J. Margulis and D. A. Case, J. Am. Chem. Soc., 2011,
133, 15252–15255.
14 J. P. M. Lommerse, J. J. M. van Rooijen, L. M. J. Kroon-Batenburg,
J. P. Kamerling and J. F. G. Vliegenthart, Carbohydr. Res., 2002, 337,
2279–2299.
15 I. Bertini, C. Luchinat and G. Parigi, Prog. Nucl. Magn. Reson.
Spectrosc., 2002, 40, 249–273.
16 P. H. Keizers and M. Ubbink, Prog. Nucl. Magn. Reson. Spectrosc.,
2011, 58, 88–96.
17 G. Otting, Annu. Rev. Biophys., 2010, 39, 387–405.
18 S. Yamamoto, T. Yamaguchi, M. Erde
K. Kato, Chem.–Eur. J., 2011, 17, 9280–9282.
19 M. Erdelyi, E. d’Auvergne, A. Navarro-Vazquez, A. Leonov and
C. Griesinger, Chem.–Eur. J., 2011, 17, 9368–9376.
20 A. Mallagaray, A. Canales, G. Domınguez, J. Jime
and J. Perez-Castells, Chem. Commun., 2011, 47, 7179–7181.
´
lyi, C. Griesinger and
´
´
Fig. 3 Correlations between the experimentally observed PCS values
with (a) Tm3+ and (b) Tb3+ and back-calculated PCS values.
´
´
nez-Barbero
´
21 T. Ariga, M. P. McDonald and K. Y. Robert, J. Lipid Res., 2008,
49, 1157–1175.
22 J. Fantini and N. Yahi, Expert Rev. Mol. Med., 2010, 12, e27.
23 E. Posse de Chaves and S. Sipione, FEBS Lett., 2010, 584,
1748–1759.
24 H. C. Siebert, G. Reuter, R. Schauer, C. W. von der Lieth and
J. Dabrowski, Biochemistry, 1992, 31, 6962–6971.
25 Y. Aubin, Y. Ito, J. C. Paulson and J. H. Prestegard, Biochemistry,
1993, 32, 13405–13413.
26 G. R. Kiddle and S. W. Homans, FEBS Lett., 1998, 436, 128–130.
27 M. J. Milton, R. Harris, M. A. Probert, R. A. Field and
S. W. Homans, Glycobiology, 1998, 8, 147–153.
lanthanide-assisted NMR method in conjunction with MD
simulations in the evaluation of dynamic conformational
ensembles of highly flexible oligosaccharides, considering their
minor conformers in a systematic manner.
In summary, we successfully acquired PCSs derived from
the GM3 trisaccharide by the lanthanide-tagging method and
interpreted the PCS data by inspecting a vast conformational
ensemble of this flexible trisaccharide generated from MD
simulations. The lanthanide-assisted NMR approach serves as
28 M. L. DeMarco and R. J. Woods, Glycobiology, 2009, 19, 344–355.
c
4754 Chem. Commun., 2012, 48, 4752–4754
This journal is The Royal Society of Chemistry 2012