Zinc Acetate as a Catalyst for the Hydroacylation Reaction
Letters in Organic Chemistry, 2012, Vol. 9, No. 4 271
21.4; MS (ESI) calcd for C15H19N3O7 M- 352.12, found:
352.16.
1.33-1.28 (m, 12H), 1.18-1.13 (m, 3H); 13C NMR (100 MHz,
CDCl3): δ = 174.7, 155.1, 152.6, 72.1, 70.3, 30.5, 21.8, 21.7,
8.9; MS (ESI) calcd for C11H20N2O5 M- 259.13, found:
259.15.
Hydroacylation Product 13: 1H NMR (400 MHz, CDCl3):
δ = 6.61 (s, 1H), 5.05-4.95 (m, 2H), 2.89 (s, 2H), 1.67-1.64
(m, 4H), 1.32-1.30 (m, 20H), 0.87 (b, J = 6.4 Hz, 5H); 13C
NMR (100 MHz, CDCl3): δ = 173.5 155.1, 152.5, 71.1, 69.9,
36.8, 31.7, 31.3, 28.6, 24.5, 22.5, 22.3, 22.1, 21.6, 21.2, 13.8;
MS (ESI) calcd for C15H28N2O5 M- 315.19, found: 315.17.
1
Hydroacylation Product 4: H NMR (400 MHz, CDCl3):
δ = 7.58 (d, J = 11.2 Hz, 4H), 7.04 (s, 1H), 5.03-4.97 (m,
1H), 4.94-4.88, (m, 1H), 1.27 (d, J = 13.2 Hz, 6H), 1.12 (d, J
= 5.2 Hz, 6H); 13C NMR (100 MHz, CDCl3): δ = 170.4,
155.2, 152.7, 133.9, 131.8, 131.6, 131.4, 129.7, 126.7, 72.7,
70.8, 21.9, 21.4; MS (ESI) calcd for C15H19BrN2O5 M-
385.04, found: 385.22.
1
Hydroacylation Product 5: H NMR (400 MHz, CDCl3):
δ = 7.76-7.70 (m, 2H), 6.90 (d, J = 7.2 Hz, 1H), 6.61 (t, J =
6.2 Hz, 1H), 6.38 (s, 1H), 5.05-4.92 (m, 2H), 3.09 (s, 6H),
1.26 (d, J = 6.4 Hz, 12H); 13C NMR (100 MHz, CDCl3): δ =
156.4, 153.7, 153.4, 112.1, 111.4, 110.9, 110.3, 72.2, 71.7,
40.0, 21.9, 21.7, 21.5; MS (ESI) calcd for C17H25N3O5 M-
350.17, found: 350.17.
CONFLICT OF INTEREST
Declared none.
ACKNOWLEDGEMENTS
The work was financially supported by Scientific
Research Foundation of Nanchang Hangkong University
(Grant EA201102178).
1
Hydroacylation Product 6: H NMR (400 MHz, CDCl3):
δ = 7.90 (t, J = 1.2 Hz, 1H), 7.61 (d, J = 4.8 Hz, 1H), 7.27 (d,
J = 2.4 Hz, 1H), 7.09 (d, J = 4.8 Hz, 1H), 6.95 (s, 1H), 5.08-
5.01 (m, 2H), 1.30 (d, J = 5.2 Hz, 12H); 13C NMR (100
MHz, CDCl3): δ = 162.7, 155.5, 152.7, 135.6, 134.7, 133.7,
127.2, 72.6, 70.8, 21.9, 21.6, 21.5; MS (ESI) calcd for
C13H18N2O5S M- 313.09, found: 313.13.
Hydroacylation Product 7: 1H NMR (400 MHz, CDCl3):
δ = 7.97 (s, 1H), 7.37 (s, 1H), 7.29-7.27 (m, 1H), 5.01-5.95
(m, 2H), 1.26 (d, J = 6.4 Hz, 6H), 1.19 (d, J = 5.6 Hz, 1H);
13C NMR (100 MHz, CDCl3): δ = 165.3, 155.3, 152.9, 136.0,
131.7, 127.6, 125.4, 72.4, 70.7, 21.9, 21.7, 21.4; MS (ESI)
calcd for C13H18N2O5S M- 313.09, found: 312.99.
REFERENCES
[1]
(a) Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.; Biju, A.
T. Engaging Zwitterions in Carbon-Carbon and Carbon-Nitrogen
Bond-Forming Reactions: A Promising Synthetic Strategy. Acc.
Chem. Res. 2006, 39, 520; (b) Long, Y. H.; Zeng, H. P.; Yang, D.
Q. Highly Efficient Rhodium-Catalyzed Asymmetric Ring-
Opening Reactions of Oxabenzonorbornadiene with Amine
Nucleophiles. Catal. Lett. 2010, 138, 124. (c) Vargas, C.; Balu, A.
M.; Campelo, J. M.; Gonzalez-Arellano, C.; Luque, R.; Romero, A.
A. Towards Greener and More Efficient C-C and C-Heteroatom
Couplings: Present and Future. Curr. Org. Synth. 2010, 7, 568.
Nair, V.; Biju, A. T.; Mathew, S. C.; Babu, B. P. Carbon–Nitrogen
1
[2]
[3]
Hydroacylation Product 8: H NMR (400 MHz, CDCl3):
Bond-Forming Reactions of Dialkyl Azodicarboxylate:
A
δ = 7.71 (t, J = 6.4 Hz, 1H), 7.55-7.52 (m, 1H), 6.82 (s, 1H),
5.08-4.98 (m, 2H), 2.84 (t, J = 7.6 Hz, 2H), 1.71-1.65 (m,
2H), 1.32-1.13 (m, 26H), 0.99-0.86 (m, 7H), 13C NMR (100
MHz, CDCl3): δ = 173.5, 155.9, 135.2, 130.9, 128.8, 125.5,
72.3, 72.0, 31.9, 31.3, 30.5, 29.6, 29.5, 29.3, 29.2, 29.0, 27.7,
22.6, 21.9, 21.7, 19.1, 14.1; MS (ESI) calcd for C25H42N2O5S
M- 481.27, found: 481.37.
Promising Synthetic Strategy. Chem. Asian J. 2008, 3, 810.
(a) Schenck, G. O.; Formaneck, H. Zur Strahlenchemie des
Azodicarbonesters. Angew. Chem. 1958, 70, 505. (b) Huisgen, R.;
Jakob, F. Additionsreaktionen Der NN-Doppelbindung. 2. Der
Chemismus Einiger Weiterer Reaktionen Des Azodicarbonesters.
Justus Liebigs Ann. Chem. 1954, 590, 37. (c) González-Rosende,
M. E.; Lozano-Lucia, O.; Zaballos-Garcia, E.; Sepúlveda-Arques,
J. ChemInform Abstract: Reaction of N-Substituted 2-
Formylpyrroles with Azodicarbonylic Compounds. J. Chem. Res.,
Synop. 1995, 260. (d) Zaballos-García, E.; González-Rosende, M.
E.; Jorda-Gregori, J. M.; Sepúlveda-Arques, J.; Jennings, W. B.;
O’Leary, D.; Twomey, S. Ring transformation of furfural into an
unusual bicyclic system: Characterisation and dynamic
1
Hydroacylation Product 9: H NMR (400 MHz, CDCl3):
δ = 8.10 (d, J = 7.2 Hz, 1H), 7.81-7.29 (m, 7H), 5.09-4.99
(m, 2H), 1.31 (m, 12H); 13C NMR (100 MHz, CDCl3): δ =
170.5, 152.9, 145.8, 131.8, 130.9, 129.2, 128.9, 128.8, 128.6,
118.8, 72.3, 71.8, 21.8, 21.7, 21.2; MS (ESI) calcd for
C17H22N2O5 (M+Na)+ 357.14, found: 357.10.
Hydroacylation Product 10: 1H NMR (400 MHz, CDCl3):
δ = 6.67 (s, 1H), 5.05-4.94 (m, 2H), 2.89 (s, 2H), 1.65 (d, J =
6.8 Hz, 2H), 1.32-1.25 (m, 21H), 0.88 (t, J = 6.6 Hz, 3H); 13C
NMR (100 MHz, CDCl3): δ = 174.0, 155.1, 152.6, 72.1,
70.4, 31.9, 29.6, 29.4, 29.3, 29.2, 29.1, 29.0, 24.7, 24.6, 22.6,
21.8, 21.7, 14.1; MS (ESI) calcd for C20H38N2O5 (M+Na)+
409.27, found: 409.18.
Hydroacylation Product 11: 1H NMR (400 MHz, CDCl3):
δ = 6.79 (s, 1H), 5.07-4.94 (m, 2H), 3.66-3.60 (m, 1H), 1.32
(d, J = 6 Hz, 6H), 1.20 (d, J = 6.8 Hz, 12H); 13C NMR (100
MHz, CDCl3): δ = 178.3, 155.2, 152.5, 72.1, 70.3, 33.7,
21.8, 21.6, 19.3, 18.8; MS (ESI) calcd for C12H22N2O5 M-
273.15, found: 273.25.
stereochemistry
of
6,7-diethoxycarbonyl-6,7-diaza-8-
oxabicyclo[3,2,1]oct-3-en-2-one. Tetrahedron 1997, 53, 9313.
(a) Lee, D.; Otte, R. D. Transition-Metal-Catalyzed Aldehydic C-H
Activation by Azodicarboxylates. J. Org. Chem. 2004, 69, 3569.
(b) Kim, Y. J.; Lee, D. Use of N-N Bond Stereodynamics in Ring-
Closing Metathesis to Form Medium-Sized Rings and
Macrocycles. Org. Lett. 2004, 6, 4351. (c) Ni, B.; Zhang, Q.; Garre,
S.; Headley, A. D. Ionic Liquid (IL) as an Effective Medium for the
Highly Efficient Hydroacylation Reaction of Aldehydes with
Azodicarboxylates. Adv. Synth. Catal. 2009, 351, 875. (d) Zhang,
Q.; Parker, E.; Headley, A. D.; Ni, B. A Practical and Highly
Efficient Hydroacylation Reaction of Azodicarboxylates with
Aldehydes in Water. Synlett. 2010, 2453. (e) Qin, Y.; Peng, Q;
Song, J.; Zhou, D. Highly efficient copper-catalyzed
hydroacylation reaction of aldehydes with azodicarboxylates.
Tetrahedron Lett. 2011, 52, 5880. (f) Chudasama, V.; Ahern, J. M.;
Dhokia, D. V.; Fitzmaurice, R. J.; Caddick, S. Functionalisation of
aldehydes via aerobic hydroacylation of azodicarboxylates ‘on’
water. Chem. Commun. 2011, 47, 3269.
[4]
[5]
(a) Mimoun, H. Selective Reduction of Carbonyl Compounds by
Polymethylhydrosiloxane in the Presence of Metal Hydride
Catalysts. J. Org. Chem. 1999, 64, 2582. (b) Mimoun, H.; de Saint
Hydroacylation Product 12: 1H NMR (400 MHz, CDCl3):
δ = 6.73, (s, 1H), 5.07-4.93 (m, 2H), 2.92 (d, J = 6 Hz, 2H),