3290
D. M. Ramsey et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3287–3290
that full length PARP (ꢀ113 kDa) decreased in a dose-dependent
Compound 4 represents a unique tool that binds specifically to
Hsp90’s N-middle domain and allows co-chaperone and client
binding interactions with Hsp90, yet it inhibits cell growth by
potentially altering Hsp90’s conformational dynamics and pre-
venting release of client proteins from the Hsp90 scaffold. Further
studies are currently underway to gain a deeper understanding of
these interactions.
fashion upon the addition of increasing concentrations of com-
pound 4. For cells treated with 50 lM of compound 4, there was
a 48% decrease in full-length PARP compared to non-treated cells,
(Fig. S22). These data indicate that compound 4 causes apoptosis in
a caspase dependent manner.
In addition to the above reported data, we investigated the abil-
ity of our compounds to inhibit clients and co-chaperones from
binding to Hsp90. Previously, we had found that unlike compounds
1,2 2,3 and 3,4 compound 4 did not inhibit the interaction between
four client proteins and co-chaperones that bound to the C-termi-
nus of Hsp90, including: inositol hexakisphosphate kinase-2
(IP6K2), FKBP38, FKBP52, and Hsp organizing protein (HOP).6
Two other proteins of interest, which bind to the middle-domain
of Hsp90 are HER2 and Akt1. The protein kinase B (Akt) and phos-
phatidylinositol-3-kinase (PI3K) pathways are activated by growth
factors such as HER2, which leads to anti-apoptosis or cellular pro-
liferation of cancer cells.24 Hsp90 inhibitor 17-AAG prevents the
association of Akt1 with Hsp90, leading to ubiquitinization and
degradation of Akt1in the cell.25 To determine if compound 4’s
cytotoxic effect is due to the binding inhibition of these client
proteins to Hsp90, we compared the binding effects of compound
4 to 17-AAG. 17-AAG reduced the binding of Hsp90 to Akt by
80% and to HER2 by 47% (Fig. S23). Similar to our earlier results
with proteins that bound to the C-terminus of Hsp90, compound
4 had little to no effect on the binding of either client protein to
Hsp90 (Fig. S23). These data indicate that the cytotoxic effect of
compound 4 is not due to the disruption of HER2- or Akt-binding
interactions to Hsp90.
Acknowledgments
We thank the University of New South Wales (UNSW), as well
as NIH 1R01CA137873 for support of D.M.R. and S.R.M. We also
thank the Frasch Foundation (658-HF07) (support of L.D.A.) and
NIH MIRT (support of J.R.M and L.D.A.).
Supplementary data
Supplementary data (spectral data and experimental details for
compounds and biological assay conditions) associated with this
References and notes
1. Sellers, R. P.; Alexander, L. D.; Johnson, V. A.; Lin, C.-C.; Savage, J.; Corral, R.;
Moss, J.; Slugocki, T. S.; Singh, E. K.; Davis, M. R.; Ravula, S.; Spicer, J. E.; Oelrich,
J. L.; Thornquist, A.; Pan, C.-M.; McAlpine, S. R. Bioorg. Med. Chem. 2010, 18,
6822.
2. Vasko, R. C.; Rodriguez, R. A.; Cunningham, C. N.; Ardi, V. C.; Agard, D. A.;
McAlpine, S. R. ACS Med. Chem. Lett. 2010, 1, 4.
3. Kunicki, J. B.; Petersen, M. N.; Alexander, L. D.; Ardi, V. C.; McConnell, J. R.;
McAlpine, S. R. Bioorg Med. Chem. Lett. 2011, 21, 4716.
In summary, compound 4 is a cytotoxic macrocycle that induces
apoptosis in colon cancer cells. Through binding to the N-middle
domain of Hsp90, compound 4 forms stable interactions and
successfully competes for binding with one of the more potent
Sansalvamide A analogs (compound 3), thus indicating that it has
the same binding site as compound 3. Similar to cells treated with
compound 3, cytosolic Hsp90 accumulates in cells treated with
compound 4 and is indicative of cellular stress. This accumulation
of Hsp90 in the cytosol, seen in cells treated with all three com-
pounds (Fig. 4), is indicative of the cells inability to break down
misfolded proteins, and suggests that both compounds 3 and 4 in-
hibit the proteasome degradation pathway. This accumulation of
Hsp90 and potentially other misfolded proteins due to treatment
with compound 4 eventually results in PARP cleavage and apopto-
sis at 72 h post-treatment.
Unlike other published analogs of Sansalvamide A, or other
Hsp90 inhibitors, compound 4 does not disrupt interactions be-
tween Hsp90 and several client proteins and co-chaperones that
play key roles in apoptosis. Yet compound 4’s potency and ability
to compete for the same binding site on Hsp90, similar to other
Sansalvamide A analogs that do inhibit key client proteins and
co-chaperones from binding to Hsp90, is intriguing. Further, the
specific structural requirements to obtain potency and binding to
Hsp90 clearly indicate that compound 4 acts via a unique mecha-
nism. One hypothesis is that compound 4 may disrupt Hsp90’s pro-
tein-folding ability, leaving client proteins bound to the scaffold
but inhibiting the correct folding, activation and release of these
client proteins into the cytosol. If compound 4 locks Hsp90 into a
conformation that prevents folding and release of client proteins,
these misfolded proteins would accumulate over time in the cell
and eventually trigger cell death. This hypothesis is supported by
our binding data that shows compound 4 did not disrupt Hsp90
binding interactions between HER2, Akt1 or other client proteins
(Fig. S23 and Ardi, et al.), yet compound 4 induces apoptosis by
PARP cleavage (Fig. S22). Conformational changes in the domains
of Hsp90 are thought to contribute to co-chaperone and client
protein binding and release, thereby promoting cell growth.26
4. Ardi, V. C.; Alexander, L. D.; Johnson, V. A.; McAlpine, S. R. ACS Chem. Biol. 2011,
6, 1357.
5. Belofsky, G. N.; Jensen, P. R.; Fenical, W. Tetrahedron Lett. 1999, 40, 2913.
6. a) Schnieder, C.; Nimmesgern, E.; Ouerfelli, O.; Danishefsky, S. J.; Rosen, N.;
Hartl, F. U. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14536–14541; b) Nathan, D. F.;
Vos, M. H.; Lindquist, S. L. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 12949.
7. Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Nat. Rev. Cancer 2010, 10,
537.
8. Pearl, L. H.; Prodromou, C. Curr. Opin. Struct. Bio. 2000, 10, 46.
9. Roe, S. M.; Prodromou, C.; O’Brien, R.; Ladbury, J. E.; Piper, P. W.; Pearl, L. H. J.
Med. Chem. 1999, 42, 260.
10. Biamonte, M. A.; Van de Water, R.; Amdt, J. W.; Scannevin, R. H.; Perret, D.; Lee,
W.-C. J. Med. Chem. 2010, 53.
11. a) Zhang, R.; Luo, D.; Miao, R.; Bai, L.; Ge, Q.; Sessa, W. C.; Min, W. Oncogene
2005, 24, 3954; b) Citri, A.; Harari, D.; Shohat, G.; Ramakrishnan, P.; Gan, J.;
Lavi, S.; Eisenstein, M.; Kimchi, A.; Wallach, D.; Pietrokovski, S.; Yarden, Y. J.
Biol. Chem. 2006, 281, 14361.
12. Young, J. C.; Obermann, W. M. J.; Hartl, F. U. J. Biol. Chem. 1998, 273, 18007.
13. Li, Y.; Zhang, T.; Schwartz, S. J.; Sun, D. Drug Resist Update 2009, 12, 17.
14. Otrubova, K.; Lushington, G. H.; VanderVelde, D.; McGuire, K. L.; McAlpine, S. R.
J. Med. Chem. 2008, 51, 530.
15. (a) Rodriguez, R. A.; Pan, P.-S.; Pan, C.-M.; Ravula, S.; Lapera, S. A.; Singh, E. K.;
Styers, T. J.; Brown, J. D.; Cajica, J.; Parry, E.; Otrubova, K.; McAlpine, S. R. J. Org.
Chem. 1980, 2007, 72; (b) Styers, T. J.; Rodriguez, R. A.; Pan, P.-S.; McAlpine, S. R.
Tetrahedron Lett. 2006, 47, 515.
16. (a) Barral, J. M.; Hutagalung, A. H.; Brinker, A.; Hartl, F. U.; Epstein, H. F. Science
2002, 295, 669; (b) Koyasu, S.; Nishida, E.; Kadowaki, T.; Matsuzaki, F.; LIida, K.;
Harada, F.; Kasuga, M.; Sakai, H.; Yahara, I. Proc. Natl. Acad. Sci. 1986, 83, 8054;
c) Sanchez, E. R.; Redmond, T.; Scherrer, L. C.; Bresnick, E. H.; Welsh, M. J.; Pratt,
W. B. Mol. Endocrinol. 1988, 756.
17. Pieper, M.; Rupprecht, H. D.; Bruch, K. M.; De Heer, E.; Schocklmann, H. O.
Kidney Int. 2000, 58, 2377.
18. Passinen, S.; Valkila, J.; Manninen, T.; Syvala, H.; Ylikomi, T. Eur. J. Biochem.
2001, 268, 5337.
19. Meyer, P.; Prodromou, C.; Hu, B.; Vaughan, C.; Roe, S. M.; Panaretou, B.; Piper, P.
W.; Pearl, L. H. Mol. Cell. 2003, 11, 647–658. Mol. Cell. Biol. 2003, 11, 647.
20. Hawle, P.; Siepmann, M.; Harst, A.; Siderius, M.; Reusch, H. P.; Obermann, W.
M. Mol. Cell. Biol. 2006, 26, 8385.
21. Allan, R. K.; Mok, D.; Ward, B. K.; Ratajczak, T. J. Biol. Chem. 2006, 28, 7161.
22. Boulares, A. H.; Yakovlev, A. G.; Ivanova, V.; Stoica, B. A.; Wang, G.; Iver, S.;
Smulson, M. J. Biol. Chem. 1999, 274.
23. Heeres, J. T.; Hergenrother, P. J. Curr. Opin. Chem. Biol. 2007, 11, 644.
24. Wu, Y.; Mohamed, H.; Chillar, R.; Ali, I.; Clayton, S.; Slamon, D.; Vadgama, J. V.
Breast Cancer Res. 2008, 10, R3.
25. Basso, A. D.; Solit, D. B.; Chiosis, G.; Giri, B.; Tsichlis, P.; Rosen, N. J. Biol. Chem.
2002, 277, 39858.
26. Wandinger, S. K.; Richter, K.; Buchner, J. J. Biol. Chem. 2008, 283, 18473.