reaction mixture (31P NMR δ 58.9). The reaction was allowed to
stir for 30 minutes. Completion of the reaction was confirmed by
31P NMR analysis of a small sample of the reaction mixture (31P
NMR δ 25.2). The toluene reaction solvent was removed in
vacuo and cyclohexane (10 ml) was added to the residue. Oxalyl
chloride (0.30 ml, 3.5 mmol) was added dropwise to the reaction
mixture which caused the formation of a white precipitate of
chlorophosphonium salt. The supernatant liquid was removed by
cannula filtration. The residue was washed (2 × 10 ml) twice
with cyclohexane and the washings removed by cannula fil-
tration. The combined cyclohexane filtrate was washed with
water (20 ml × 2). The separated organic phase was then dried
over anhydrous MgSO4. Filtration to remove the drying agent
and evaporation of the solvent in vacuo yielded neomenthyl
chloride (0.49 g, 80%).
pp. 387–431; (b) R. Appel, Angew. Chem., Int. Ed. Engl., 1975, 14, 801;
(c) I. M. Downie, J. B. Holmes and J. B. Lee, Chem. Ind. (London),
1966, 900.
3 (a) O. Mitsunobu and M. Yamada, Bull. Chem. Soc. Jpn., 1967, 40,
2380; (b) T. Mukaiyama, R. Matsueda and H. Maruyama, Bull. Chem.
Soc. Jpn., 1970, 43, 1271; (c) D. L. Hughes, in Organic Reactions, ed.
P. Beak et al., Wiley, New York, 1992, vol. 42, pp. 335–656;
(d) K. C. K. Swamy, N. N. B. Kumar, E. Balaraman and K. V. P.
P. Kumar, Chem. Rev., 2009, 109, 2551; (e) O. Mitsunobu, Synthesis,
1981, 1; (f) S. Dandapani and D. P. Curran, Chem.–Eur. J., 2004, 10,
3130.
4 (a) See ref. 1b (b) F. Palacios, C. Alonso, D. Aparicio, G. Rubiales and J.
M. de los Santos, Tetrahedron, 2007, 63, 523.
5 D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J.
L. Leazer Jr., R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman,
A. Wells, A. Zaks and T. Y. Zhang, Green Chem., 2007, 9, 411.
6 J. J. Cao, F. Zhou and J. Zhou, Angew. Chem., Int. Ed., 2010, 49, 4976.
7 See ref. 3f.
8 I. J. S. Fairlamb, ChemSusChem, 2009, 2, 1021.
9 D. Stockburger, in Production-Integrated Environmental Protection and
Waste Management in the Chemical Industry, ed. C. Christ, Wiley-VCH,
Weinheim, Germany, 1999, pp. 90–93.
10 H. Pommer and A. Nürrenbach, Pure Appl. Chem., 1975, 43, 527.
11 T. Fukumoto and A. Yamamoto, US Pat., 5292973, March 8th 1994,
Chem. Abs., 1994, 533844; CAN 121, 133844.
δH (300 MHz, CDCl3, 25 °C): 4.77 (m, 1 H), 2.02–1.91 (m, 1
H), 1.88–1.78 (m, 1 H),1.68–1.56 (m, 2 H), 1.48–1.39 (m, 2 H),
1.33–1.28 (m, 2 H), 1.04–1.01 (m, 1 H) 0.85 (d, 3JH,H = 6.4 Hz,
3
3
3 H, CH3), 0.83 (d, JH,H = 6.7 Hz, 3 H, CH3), 0.70 (d, JH,H
=
6.9 Hz, 3 H, CH3).44
12 E. C. Dunne, E. J. Coyne, P. B. Crowley and D. G. Gilheany, Tetrahedron
Lett., 2002, 43, 2449.
The solid residue remaining after cannula filtration of the reac-
tion mixture was dissolved in THF (10 ml) and cooled to 0 °C.
A solution of LiAlH4 in THF (1.0 M, 3.5 ml, 3.5 mmol) was
added dropwise to the mixture, which was then stirred for
30 minutes while warming to room temperature. Ethyl acetate
(10 ml) was added to quench the LiAlH4, followed by saturated
aqueous NH4Cl (10 ml). The reaction mixture was transferred to
a separatory funnel and the layers were separated. The aqueous
phase was washed twice more with ethyl acetate (10 ml each
wash). The combined organic phases were dried over MgSO4,
filtered through a silica plug to remove residual phosphine oxide
and concentrated in vacuo to give phosphine. (0.78 g, 86%). δP
(162 MHz): −4.5 (lit.43 −4.8).
13 J. McNulty and K. Keskar, Tetrahedron Lett., 2008, 49, 7054.
14 (a) Q. Wang, M. Khoury and M. Schlosser, Chem.–Eur. J., 2000, 6, 420;
(b) S. Trippet and D. M. Walker, J. Chem. Soc., 1961, 2130;
(c) H. Daniel and M. Le Corre, Tetrahedron Lett., 1987, 28, 1165.
15 M. G. Russell and S. Warren, Tetrahedron Lett., 1998, 39, 7995.
16 J. McNulty and P. Das, Eur. J. Org. Chem., 2009, 4031.
17 F. Westman, Org. Lett., 2001, 3, 3745.
18 P. S.-W. Leung, Y. Teng and P. H. Toy, Synlett, 2010, 1997.
19 P. S.-W. Leung, Y. Teng and P. H. Toy, Org. Lett., 2010, 12, 4996.
20 C. J. O’Brien, J. L. Tellez, Z. S. Nixon, L. J. Kang, A. L. Carter, S.
R. Kunkel, K. C. Przeworski and G. C. Chass, Angew. Chem., Int. Ed.,
2009, 48, 6836. See also ref. 8. for a review on the topic of the phos-
phine-catalysed Wittig reaction.
21 R. M. Denton, J. An and B. Adeniran, Chem. Commun., 2010, 46, 3025.
22 R. M. Denton, J. An, B. Aderinan, A. J. Blake, W. Lewis and A.
M. Poulton, J. Org. Chem., 2011, 76, 6749.
23 H. A. van Kalkeren, S. H. A. M. Leenders, C. R. A. Hommersom, F. P. J.
T. Rutjes and F. L. van Delft, Chem.–Eur. J., 2011, 17, 11290.
24 R. M. Denton, X. Tang and A. Przeslak, Org. Lett., 2010, 12, 4678.
25 S. P. Marsden, A. E. McGonagle and B. McKeever-Abbas, Org. Lett.,
2008, 10, 2589.
26 T. Yano, M. Hoshino, M. Kuroboshi and H. Tanaka, Synlett, 2010, 801.
27 T. Yano, M. Hoshino and H. Tanaka, Tetrahedron Lett., 2010, 51, 698.
28 C. Harcken and S. F. Martin, Org. Lett., 2001, 3, 3591.
29 J. Cotter, A.-M. L. Hogan and D. F. O’Shea, Org. Lett., 2007, 9, 1493.
30 (a) M. Masaki and K. Fukui, Chem. Lett., 1977, 151; (b) K. Fukui and
N. Kakeya, U. S. Pat., 4,301,301, 1981.
31 E. Bergin, C. T. O’Connor, S. B. Robinson, E. M. McGarrigle, C.
P. O ’Mahony and D. G. Gilheany, J. Am. Chem. Soc., 2007, 129, 9566.
32 K. V. Rajendran and D. G. Gilheany, Chem. Commun., 2012, 48, 817.
33 S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and J. M. Sheffield,
Chem. Commun., 1996, 2521.
Acknowledgements
We thank sincerely the Irish Research Council for Science,
Engineering and Technology (IRCSET) for an EMBARK Scho-
larship to PAB and Science Foundation Ireland (SFI) for a scho-
larship to KVR (under grants 08/RFP/CHE1251 and 09/IN.1/
B2627). We are also very grateful to UCD Centre for Synthesis
and Chemical Biology (CSCB) and the UCD School of Chem-
istry and Chemical Biology for access to their extensive analysis
facilities and especially to Dr Yannick Ortin for NMR.
34 S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and J. M. Sheffield,
Chem. Commun., 1998, 921.
Notes and references
35 M. A. H. A. Al-Juboori, P. N. Gates and A. S. Muir, J. Chem. Soc.,
Chem. Commun., 1991, 1271.
36 N. C. Gonnella, C. Busacca, S. Campbell, M. Eriksson, N. Grinberg,
T. Bartholomeyzik, S. Ma and D. L. Norwood, Magn. Reson. Chem.,
2009, 47, 461.
37 For cases where the Wittig reaction is performed in Et2O, it was found in
practice that the reproducibility of phosphorus removal was far superior if
the oxalyl chloride was added to the neat crude product rather than to the
solution of the crude product in Et2O.
38 The Z : E ratio of the alkene was assigned by integrationof characteristic
signals in the 1H NMR and/or 19F NMR, for both the crude and the
purified products.
1 (a) B. E. Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863;
(b) A. W. Johnson, Ylides and Imines of Phosphorus, Wiley, New York,
1993, pp. 221–305; (c) E. Vedejs and M. J. Peterson, in Topics in
Stereochemistry, ed. E. L. Eliel and S. H. Wilen, Wiley, New York, 1994,
vol. 21, pp. 1–158; (d) A. D. Abell and M. K. Edmonds, in Organo-
phosphorus Reagents, ed. P. J. Murphy, Oxford University Press,
Oxford, U.K., 2004, pp. 99–127; (e) R. Schobert, in Organophosphorus
Reagents, ed. P. J. Murphy, Oxford University Press, Oxford, U.K.,
pp. 12–148; (f) A. D. Abell and M. K. Edmonds, in Modern Carbonyl
Olefination, ed. T. Takeda, Wiley–VCH, Weinheim, Germany, 2004,
pp. 1–17; (g) E. Vedejs and M. J. Peterson, in Advances in Carbanion
Chemistry, ed. V. Snieckus, JAI, Greenwich, CN, 1996, vol. 2, pp. 1–85.
2 (a) R. Appel and M. Halstenberg, in Organophosphorus Reagents in
Organic Synthesis, ed. J. I. G. Cadogan, Academic Press, London, 1979,
39 DPFGSE-NOE stands for Double Pulse Field Gradient Spin Echo
Nuclear Overhauser Effect NMR spectroscopy.
3536 | Org. Biomol. Chem., 2012, 10, 3531–3537
This journal is © The Royal Society of Chemistry 2012