10.1002/adsc.201900416
Advanced Synthesis & Catalysis
Methyl-2-bromo-2-phenylacetate (Figure 5, 22, 93 mg,
81%, colorless oil):[13a] Rf (hexane/ethyl acetate 10/1):
0.44; 1H NMR (CDCl3, 300 MHz): δ 7.46 (m, 2H), 7.28 (m,
3H), 5.29 (s, 1H), 3.71 (s, 3H); 13C NMR (CDCl3, 75
MHz): δ 168.8, 135.7, 129.3, 128.9, 128.7, 53.4, 46.5. MS
(APCI) m/z calculated for C9H9BrO2 ([M + H]+) 227.9,
found 227.9
Hernandez-Perez, S. K. Collins, Acc. Chem. Res. 2016,
49, 1557-1565.
[6] a) S. M. Stevenson, R. F. Higgins, M. P. Shores, E. M.
Ferreira, Chem. Sci. 2017, 8, 654-660; b) R. F. Higgins,
S. M. Fatur, S. G. Shepard, S. M. Stevenson, D. J.
Boston, E. M. Ferreira, N. H. Damrauer, A. K. Rappé,
M. P. Shores, J. Am. Chem. Soc. 2016, 138, 5451-5464;
c) S. M. Stevenson, M. P. Shores, E. M. Ferreira,
Angew. Chem. Int. Ed. 2015, 54, 6506-6510.
(2-bromoethyl)benzene (Figure 5, 23, 82 mg, 89%,
colorless oil):[33] Rf (hexane/dichloromethane 5/1): 0.56;
1H NMR (CDCl3, 300 MHz): δ 7.37 (m, 3H), 7.29 (m, 2H),
3.63 (t, J=7.7 Hz, 2H), 3.23 (t, J=7.6 Hz, 2H); 13C NMR
(CDCl3, 75 MHz): δ 138.9, 128.70, 128.66, 127.0, 39.5,
33.0. MS (APCI) m/z calculated for C8H9Br ([M + H]+)
184.0, found 184.0
[7] a) I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science
2014, 346, 725-728; b) L. Wang, W. Huang, R. Li, D.
Gehrig, P. W. M. Blom, K. Landfester, K. A. I. Zhang,
Angew. Chem. Int. Ed. 2016, 55, 9783-9787; c) N. A.
Romero, D. A. Nicewicz, Chem. Rev. 2016, 116,
10075-10166; d) D. J. Wilger, N. J. Gesmundo, D. A.
Nicewicz, Chem. Sci. 2013, 4, 3160-3165; e) S.
Fukuzumi, K. Ohkubo, Chem. Sci. 2013, 4, 561-574; f)
H. Yi, L. Niu, C. Song, Y. Li, B. Dou, A. K. Singh, A.
Lei, Angew. Chem. Int. Ed. 2017, 56, 1120-1124.
(2-bromopropyl)benzene (Figure 5, 24, 88 mg, 88%,
colorless oil):[34] Rf (hexane/dichloromethane 5/1): 0.45;
1H NMR (CDCl3, 300 MHz): δ 7.32 (m, 3H), 7.24 (m, 2H),
4.34 (m, 1H), 3.24 (m, 1H), 3.13 (m, 1H), 1.73 (d, J=6.6
Hz, 3H); 13C NMR (CDCl3, 75 MHz): δ 138.5, 129.2,
128.4, 126.8, 50.5, 47.5, 25.7. MS (APCI) m/z calculated
for C9H11Br ([M + H]+) 198.0, found 198.0
4-(2-bromoethyl)phenol (Figure 5, 25, 89 mg, 89%,
1
colorless oil):[13d] Rf (hexane/ethyl acetate 5/1): 0.53; H
[8] a) Z. J. Wang, S. Ghasimi, K. Landfester, K. A. Zhang,
Adv. Mater. 2015, 27, 6265-6270; b) J. Luo, X. Zhang,
J. Zhang, ACS Catal. 2015, 5, 2250-2254; c) N. Kang, J.
H. Park, K. C. Ko, J. Chun, E. Kim, H. W. Shin, S. M.
Lee, H. J. Kim, T. K. Ahn, J. Y. Lee, S. U. Son, Angew.
Chem. Int. Ed. 2013, 52, 6228-6232; d) K. Zhang, Z.
Vobecka, K. Tauer, M. Antonietti, F. Vilela, Chem.
Commun. 2013, 49, 11158-11160; e) S. Ghasimi, S.
Prescher, Z. J. Wang, K. Landfester, J. Yuan, K. A. I.
Zhang, Angew. Chem. Int. Ed. 2015, 54, 14549-14553;
f) C. Yang, B. C. Ma, L. Zhang, S. Lin, S. Ghasimi, K.
Landfester, K. A. I. Zhang, X. Wang, Angew. Chem. Int.
Ed. 2016, 55, 9202-9206; g) R. S. Sprick, B. Bonillo, R.
Clowes, P. Guiglion, N. J. Brownbill, B. J. Slater, F.
Blanc, M. A. Zwijnenburg, D. J. Adams, A. I. Cooper,
Angew. Chem. Int. Ed. 2016, 55, 1792-1796; h) G.
Zhang, Z.-A. Lan, X. Wang, Angew. Chem. Int. Ed.
2016, 55, 15712-15727.
NMR (CDCl3, 300 MHz): δ 7.09 (d, J=8.5 Hz, 2H), 6.83 (d,
J=8.5 Hz, 2H), 5.38 (bs, 1H), 3.55 (t, J=7.7 Hz, 2H), 3.11
(t, J=7.6 Hz, 2H); 13C NMR (CDCl3, 75 MHz): δ 154.4,
131.2, 129.9, 115.5, 38.6, 33.4. MS (APCI) m/z calculated
for C8H9BrO ([M + H]+) 200.1, found 200.1
Cyclododecyl formate (Figure 5, 26, 95 mg, 90%, colorless
oil):[13a] Rf (hexane/dichloromethane 40/1): 0.12; 1H
NMR (CDCl3, 300 MHz): δ 7.98 (s, 1H), 5.07 (m, 1H),
1.66 (m, 2H), 1.48 (m, 2H), 1.28 (m, 18H); 13C NMR
(CDCl3, 75 MHz): δ 161.0, 72.2, 29.1, 24.0, 23.8, 23.3,
23.2, 20.8. MS (APCI) m/z calculated for C13H24O2 ([M +
H]+) 212.3, found 212.3
Acknowledgements
The authors acknowledge the Max Planck Society for the
financial support and R.L. acknowledge the support from the
Fundamental Research Funds for the Central Universities. R.L.
also thank the China Scholarship Council (CSC) for the graduate
scholarship. Stefan Schuhmacher is acknowledged for technical
support.
[9] L. Wang, J. Byun, R. Li, W. Huang, K. A. I. Zhang,
Adv. Synth. Catal. 2018, 360, 4312-4318.
[10] G. W. Gribble, Chem. Soc. Rev. 1999, 28, 335-346.
References
[11] I. Saikia, A. J. Borah, P. Phukan, Chem. Rev. 2016,
116, 6837-7042.
[1] a) H. D. Roth, Angew. Chem. Int. Ed. Engl. 1989, 28,
1193-1207; b) A. G. Griesbeck, N. Hoffmann, K. D.
Warzecha, Acc. Chem. Res. 2007, 40, 128-140.
[12] a) R. Appel, Angew. Chem. Int. Ed. Engl. 1975, 14,
801-811; b) A. van Kalkeren Henri, L. van Delft Floris,
P. J. T. Rutjes Floris, in Pure and Applied Chemistry,
Vol. 85, 2012, pp. 817-828; c) H. A. van Kalkeren, S. H.
A. M. Leenders, C. R. A. Hommersom, F. P. J. T.
Rutjes, F. L. van Delft, Chem. Eur. J. 2011, 17, 11290-
11295; d) J. Chen, J.-H. Lin, J.-C. Xiao, Org. Lett.
2018, 20, 3061-3064.
[2] J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51,
6828-6838.
[3]a) D. A. Nagib, D. W. C. MacMillan, Nature 2011, 480,
224-228; b) T. P. Yoon, M. A. Ischay, J. Du, Nat Chem
2010, 2, 527-532.
[4] a) J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam,
C. R. J. Stephenson, Nat. Chem. 2012, 4, 854-859; b)
J.-Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka, M.
R. Smith, Science 2002, 295, 305-308.
[13] a) C. Dai, J. M. R. Narayanam, C. R. J. Stephenson,
Nat. Chem. 2011, 3, 140-145; b) K. Ohkubo, K.
Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci. 2011, 2,
715-722; c) R. Li, Z. J. Wang, L. Wang, B. C. Ma, S.
Ghasimi, H. Lu, K. Landfester, K. A. I. Zhang, ACS
Cataly. 2016, 6, 1113-1121; d) T. Moriya, S. Yoneda,
K. Kawana, R. Ikeda, T. Konakahara, N. Sakai, Org.
Lett. 2012, 14, 4842-4845.
[5] a) O. Reiser, Acc. Chem. Res. 2016, 49, 1990-1996; b)
A. Sagadevan, A. Ragupathi, K. C. Hwang, Angew.
Chem. Int. Ed. 2015, 54, 13896-13901; c) S. Paria, O.
Reiser, ChemCatChem 2014, 6, 2477-2483; d) A. C.
7
This article is protected by copyright. All rights reserved.