ORGANIC
LETTERS
2012
Vol. 14, No. 9
2286–2289
Simple Synthesis of
β-Trifluoromethylstyrenes Using
(E)-Trimethyl-(3,3,3-trifluoroprop-1-
enyl)silane
Masaaki Omote, Miyuu Tanaka, Akari Ikeda, Shiho Nomura, Atsushi Tarui,
Kazuyuki Sato, and Akira Ando*
Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho,
Hirakata 573À0101, Japan
Received March 21, 2012
ABSTRACT
(E)-Trimethyl-(3,3,3-trifluoroprop-1-enyl)silane (1) was synthesized as a reagent for use in Hiyama cross-coupling reactions for the production of
β-trifluoromethylstyrene derivatives. Cross-coupling of 1 with electronically diverse aryl iodides was achieved by treatment with CsF in the
presence of catalytic amounts of palladium to afford the desired products in moderate to good yields.
Trifluoromethylation of materials such as pharmaceu-
ticals, agricultural chemicals, and functional materials
significantly improves their performances in most cases.1
This is exemplified by the fact that more than 150 fluori-
nated drugs have come on the market in the past 50 years
and now account for about 20% of all pharmaceuticals.2
The trifluoromethylation of carbonyl groups and aryl
halides has been intensively investigated. Excellent prog-
ress has been made in the catalytic trifluoromethylation of
aryl halides and is now a well-established research area.3
Although much success has been achieved with regard
to trifluoromethylation, there are still few reactions for
constructing 3,3,3-trifluoropropynylorpropenylsubstruc-
tures, despite the robust methodology involving three-
carbon-elongation reactions. There have been some re-
ports of 3,3,3-trifluoropropynylation using 2-bromo-3,3,
3-trifluoropropene4,5 and 1,1,1,3,3-pentafluoropropane6 as
three-carbon building blocks. They can be converted in situ
into (3,3,3-trifluoropropynyl)lithium which can add to car-
bonyl compounds or couple with aryl halides through a zinc
intermediate. Despite the commercial availability of these
materials for three-carbon building blocks, the widespread
application of such processes, especially in industry, has
been hindered by the low boiling points of the materials,
(1) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224–228.
(2) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc.
Rev. 2008, 37, 320–330.
(3) (a) Zanardi, A.; Novikov, M. A.; Martin, E.; Benet-Buchholz, J.;
Grushin, V. V. J. Am. Chem. Soc. 2011, 133, 20901–20913. (b)
Tomashenko, O. A.; Escudero-Adan, E. C.; Martinez Belmonte, M.;
Grushin, V. V. Angew. Chem., Int. Ed. 2011, 50, 7655–7659. (c) Samant,
B. S.; Kabalka, G. W. Chem. Commun. 2011, 47, 7236–7238. (d) Kondo,
H.; Oishi, M.; Fujikawa, K.; Amii, H. Adv. Synth. Catal. 2011, 353,
1247–1252. (e) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang, W.; Feng,
X.; Huang, K.-W. Organometallics 2011, 30, 3229–3232. (f) Morimoto,
H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem., Int. Ed.
2011, 50, 3793–3798. (g) Knauber, T.; Arikan, F.; Roeschenthaler,
G.-V.; Goossen, L. J. Chem.;Eur. J. 2011, 17, 2689–2697. (h) Cho,
E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald,
S. L. Science 2010, 328, 1679–1681. (i) Chu, L.; Qing, F.-L. Org. Lett.
2010, 12, 5060–5063. (j) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun.
2009, 1909–1911. (k) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am.
Chem. Soc. 2008, 130, 8600–8601. (l) Prakash, G. K. S.; Hu, J.; Olah,
G. A. Org. Lett. 2003, 5, 3253–3256. (m) Kobayashi, Y.; Kumadaki, I.;
Sato, S.; Hara, N.; Chikami, E. Chem. Pharm. Bull. 1970, 18, 2334–2339.
(n) Kobayashi, Y.; Kumadaki, I. Tetrahedron Lett. 1969, 47, 4095–4096.
(4) For addition to carbonyl group: (a) Mizutani, K.; Yamazaki, T.;
Kitazume, T. J. Chem. Soc., Chem. Commun. 1995, 51–52. (b) Yamazaki,
T.; Mizutani, K.; Kitazume, T. J. Org. Chem. 1995, 60, 6046–6056.
(5) For cross-coupling reaction with aryl halide: Konno, T.; Chae, J.;
Kanda, M.; Nagai, G.; Tamura, K.; Ishihara, T.; Yamanaka, H.
Tetrahedron 2003, 59, 7571–7580.
(6) (a) Brisdon, A. K.; Crossley, I. R.; Pritchard, R. G.; Sadiq, G.;
Warren, J. E. Organometallics 2003, 22, 5534–5542. (b) Brisdon, A. K.;
Crossley, I. R. Chem. Commun. 2002, 20, 2420–2421.
r
10.1021/ol300670n
Published on Web 04/18/2012
2012 American Chemical Society