color changes7 and fluorescence changes,8,9 which holds the
potential to function as a molecular sensing device for ions.
Here, we report the design, preparation, characterization,
and properties of a bistable [2]rotaxane 1-H, in which the
shuttling motion of the macrocycle on the rotaxane thread
can be dual-mode-driven, i.e. by not only acidꢀbase stimuli
but also additionꢀremoval of the fluoride anion, along with
remarkable, high-contrast fluorescent intensity changes, by
introducing ferrocene electron donor units into the system.
The chemical structure and preparation of rotaxane 1-H
are shown in Scheme 1. The key feature of the rotaxane-type
molecular shuttle is the introduction of two ferrocene (Fc)
moieties as electron donors into the dibenzo-24-crown-8
(DB24C8) ring, which can be chemically driven to shuttle
between the two well-separated recognition sites, namely
dibenzylammonium (DBA)8b,c,10 and N-methyltriazolium
(MTA) stations.8b,c,11 As a result, the fluorescence of the
4-morpholin-naphthalimide (MA) stopper can be switched
on and off by a tunable, distance-dependent photoinduced
electron transfer (PET) process12 that occurs between the Fc
electron donors and the excited MA fluorophore. Using a
threading-followed-by-stoppering strategy,2,4a,8,13 rotaxane
2-H was prepared in a moderate yield through the well-
known copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddi-
tion reaction14 between alkyne 5 and azide 6 in the presence
of macrocycle 7. Then the subsequent methylation of the
triazole unit followed by anion exchange with saturated
NH4PF6 solution afforded the target [2]rotaxane 1-H in a
high yield (90%). The dumbbell-shaped molecule 3-H was
also prepared for comparison in a similar strategy as shown
in Scheme 1.
Scheme 1. Preparation and Chemical Structures of Rotaxane
1-H and Dumbbell-Shaped Compound 3-H
(7) (a) Zhou, W.-D.; Chen, D.-G.; Li, J.-B.; Xu, J.-L.; Lv, J.; Liu,
H.-B.; Li, Y.-L. Org. Lett. 2007, 9, 3929. (b) Hsueh, S.-Y.; Lai, C.-C.;
Chiu, S.-H. Chem.;Eur. J. 2010, 16, 2997. (c) Yasuda, T.; Tanabe, K.;
Tsuji, T.; Coti, K. K.; Aprahamian, I.; Stoddart, J. F.; Kato, T. Chem.
Commun. 2010, 1224.
(8) (a) Qu, D.-H.; Wang, Q.-C.; Ren, J.; Tian, H. Org. Lett. 2004, 6,
2085. (b) Yang, W.-L.; Li, Y.-J.; Zhang, J.-H.; Chen, N.; Chen, S.-H.;
Liu, H.-B.; Li, Y.-L. J. Org. Chem. 2011, 76, 7750. (c) Zhang, H.; Kou,
X.-X.; Zhang, Q.; Qu, D.-H.; Tian, H. Org. Biomol. Chem. 2011, 9, 4051.
Rotaxanes1-H, 2-H and dumbbell compounds 3-H, 4-H
were well characterized using 1H and 13C NMR and HR-
ESI mass spectrometry. The HR-ESI mass spectrum of the
target rotaxane 1-H revealed that the most intense peak
occurred at m/z 883.8239 as a doubly charged peak, with
an isotope distribution corresponding to the consecutive
ꢀ
(9) Perez, E. M.; Dryden, D. T. F.; Leigh, D. A.; Teobaldi, G.;
Zerbetto, F. J. Am. Chem. Soc. 2004, 126, 12210.
loss of two PF6ꢀ counterions, i.e. [Mꢀ2PF6]2þ
.
(10) (a) Ashton, P. R.; Baxter, I. W.; Raymo, F. M.; Stoddart, J. F.;
White, A. J. P.; Williams, D. J.; Wolf, R. Angew. Chem., Int. Ed. 1998,
37, 1913. (b) Zhang, C.-J.; Li, S.-J.; Zhang, J.-Q.; Zhu, K.-L.; Li, N.;
Huang, F.-H. Org. Lett. 2007, 9, 5553. (c) Wang, F.; Han,
C.-Y.; He, C.-L.; Zhou, Q.-Z.; Zhang, J.-Q.; Wang, C.; Li, N.; Huang,
F.-H. J. Am. Chem. Soc. 2008, 130, 11254. (d) Qu, D.-H.; Feringa, B. L.
Angew. Chem., Int. Ed. 2010, 49, 1107. (e) Dong, S.-Y.; Luo, Y.; Yan,
X.-Z.; Zheng, B.; Ding, X.; Yu, Y.-H.; Ma, Z.; Zhao, Q.-L.; Huang,
F.-H. Angew. Chem., Int. Ed. 2011, 50, 1905.
(11) Coutrot, F.; Busseron, E. Chem.;Eur. J. 2008, 14, 4784.
(12) (a) Andersson, A.; Linke, M.; Chambron, J.-C.; Davidsson, J.;
Heitz, V.; Sauvage, J.-P.; Hammarstrom, L. J. Am. Chem. Soc. 2000,
122, 3526. (b) Andersson, A.; Linke, M.; Chambron, J.-C.; Davidsson,
J.; Heitz, V.; Sauvage, J.-P.; Hammarstrom, L. J. Am. Chem. Soc. 2002,
124, 4347. (c) Ferrer, B.; Rogez, G.; Credi, A.; Ballardini, R.; Gandolfi,
M. T.; Balzani, V.; Liu, Y.; Tseng, H.-R.; Stoddart, J. F. Proc. Natl.
Acad. Sci. U.S.A. 2006, 103, 18411. (d) Rajkumar, G. A.; Sandanayaka,
A. S. D.; Ikeshita, K.; Araki, Y.; Furusho, Y.; Takata, T.; Ito, O. J. Phys.
Chem. B 2006, 110, 6516. (e) Mateo-Alonso, A.; Ehli, C.; Rahman,
G. M. A.; Guldi, D. M.; Fioravanti, G.; Marcaccio, M.; Paolucci, F.;
Prato, M. Angew. Chem., Int. Ed. 2007, 46, 3521. (f) Mateo-Alonso, A.;
Guldi, D. M.; Paolucci, F.; Prato, M. Angew. Chem., Int. Ed. 2007, 46,
8120. (g) Sasabe, H.; Sandanayaka, A. S. D.; Kihara, N.; Furusho, Y.;
Takata, T.; Araki, Y.; Ito, O. Phys. Chem. Chem. Phys. 2009, 11, 10908.
(h) Mateo-Alonso, A. Chem. Commun. 2010, 9089.
The 1H NMR of 1-H in CDCl3 confirmed the location of
the macrocycle to be predominantly over the DBA binding
site. The peaks for the methylene protons H4, H5 on the
DBA recognition site (Figure 1c) are shifted downfield
(Δδ = 0.59 ppm) compared with those of dumbbell 3-H
(Figure 1b), meanwhile, the peaks of protons H1, H2, H3
on the dimethoxybenzene stopper shifted upfield (Δδ =
ꢀ0.13, ꢀ0.08, and ꢀ0.11 ppm, respectively) due to the
shielding effect of macrocycle 7. Moreover, the protons H14,
H15, H16, H17 on the unencircled MTA site have the same
chemical shifts as those of dumbbell 3-H. All this evidence
confirmed that the DB24C8 ring exhibits a predominant
selectivity for the encirclement of the DBA recognition site.
Addition of 2 equiv of 1,8-diazabicyclo[5.4.0]undec-7-
ene (DBU) to the CDCl3 solution of rotaxane 1-H resulted
in the migration of the DB24C8 ring to the MTA recogni-
tionsite. AsshowninFigure1d, themethylene protons H16
and H17 neighboring the naphthalimide stopper are shifted
downfield (Δδ = 0.48 and 0.13 ppm, respectively), and the
(13) Yin, J.; Chi, C.-Y.; Wu, J.-S. Org. Biomol. Chem. 2010, 8, 2594.
(14) Wang, J.-Y.; Han, J.-M.; Yan, J.; Ma, Y.-G.; Pei, J. Chem.;
Eur. J. 2009, 15, 3585.
Org. Lett., Vol. 14, No. 9, 2012
2335