ORGANIC
LETTERS
2012
Vol. 14, No. 9
2394–2397
Direct Palladium(II)-Catalyzed Synthesis
of Arylamidines from Aryltrifluoroborates
€
Jonas Savmarker, Jonas Rydfjord, Johan Gising, Luke R. Odell, and Mats Larhed*
Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry BMC,
Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
Received March 30, 2012
ABSTRACT
A fast and convenient synthesis of arylamidines starting from readily available potassium aryltrifluoroborates and cyanamides is reported. The
coupling was achieved by Pd(II)-catalysis in a one step 20 min microwave protocol using Pd(O2CCF3), 6-methyl-2,20-bipyridyl, TFA, and MeOH,
providing the corresponding arylamidines in moderate to excellent yields.
Amidines1 represent an important pharmacophore in
drug discovery and can be found in DNA and RNA
binding diamidine diminazene,2 ASIC inhibitors,3 mus-
carinic agonists for the treatment of Alzheimer’s disease,4
platelet aggregation inhibitors,5 and, recently, serine protease
inhibitors,6 to give a few examples. Amidines are also use-
ful precursors in the formation of various heterocyclic ring
systems, e.g. quinazolines,7 quinazolinones,8 pyrimidines,9
triazoles,10 and benzimidazoles.11 Typically, amidines are
prepared from nitrile containing precursors via nucleophilic
addition of a suitable amine. Similarly, amidines can also be
accessed by nucleophilic amino substitution of thioamides or
imidates.12 There are also Pd(0)-catalyzed three-component
methods,13 and recently, a direct aryne insertion into thio-
ureas was reported.14
We and others have previously developed Pd(II)-catalyzed
protocols for the generation and insertion of an arylpalla-
dium species into the polar nitrile bond.15,16 This methodol-
ogy has been used to generate arylketones, via a ketimine
intermediate, from arylboronic acids, benzoic acids, arylsul-
finates, and arenes. We hypothesized that a similar approach,
starting from an appropriate arylpalladium(II) precursor
and a cyanamide, could be used for facile preparation
of arylamidines from readily available arylborons and
(1) (a) Aly, A. A.; Nour-El-Din, A. M. ARKIVOC 2008, 153. (b)
Dunn, P. J. In Comprehensive Organic Functional Group Transforma-
tions II; Alan, R., Katritzky, R. J. K. T., Eds.; Elsevier: New York, 2005; Vol.
5, p 655.
(12) DeKorver, K. A.; Johnson, W. L.; Zhang, Y.; Hsung, R. P.; Dai,
H. F.; Deng, J.; Lohse, A. G.; Zhang, Y. S. J. Org. Chem. 2011, 76, 5092.
(13) (a) Saluste, C. G.; Crumpler, S.; Furber, M.; Whitby, R. J.
Tetrahedron Lett. 2004, 45, 6995. (b) Kishore, K.; Tetala, R.; Whitby,
R. J.; Light, M. E.; Hurtshouse, M. B. Tetrahedron Lett. 2004, 45, 6991.
(c) Saluste, C. G.; Whitby, R. J.; Furber, M. Tetrahedron Lett. 2001, 42,
6191. (d) Saluste, C. G.; Whitby, R. J.; Furber, M. Angew. Chem., Int.
Ed. 2000, 39, 4156.
(2) Clement, B.; Immel, M.; Raether, W. Arzneim.-Forsch. 1992,
42ꢀ2, 1497.
(3) Chen, X. M.; Orser, B. A.; MacDonald, J. F. Eur. J. Pharmacol.
2010, 648, 15.
(4) Ojo, B.; Dunbar, P. G.; Durant, G. J.; Nagy, P. I.; Huzl, J. J.;
Periyasamy, S.; Ngur, D. O.; ElAssadi, A. A.; Hoss, W. P.; Messer, W. S.
Bioorg. Med. Chem. 1996, 4, 1605.
(5) Cannon, C. P. Clin. Cardiol. 2003, 26, 401.
(6) Kotthaus, J.; Steinmetzer, T.; van de Locht, A.; Clement, B. J.
Enzym. Inhib. Med. Ch. 2011, 26, 115.
(7) Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett.
2010, 12, 3963.
(8) Ma, B.; Wang, Y.; Peng, J. L.; Zhu, Q. J. Org. Chem. 2011, 76,
6362.
(9) (a) Anderson, E. D.; Boger, D. L. J. Am. Chem. Soc. 2011, 133,
12285. (b) Anderson, E. D.; Boger, D. L. Org. Lett. 2011, 13, 2492.
(10) Castanedo, G. M.; Seng, P. S.; Blaquiere, N.; Trapp, S.; Staben,
S. T. J. Org. Chem. 2011, 76, 1177.
(14) Biswas, K.; Greaney, M. F. Org. Lett. 2011, 13, 4946.
(15) (a) Garves, K. J. Org. Chem. 1970, 35, 3273. (b) Zhao, L.; Lu,
X. Y. Angew. Chem., Int. Ed. 2002, 41, 4343. (c) Zhou, C. X.; Larock,
R. C. J. Am. Chem. Soc. 2004, 126, 2302. (d) Lu, X. Y.; Zhao, B. W. Org.
Lett. 2006, 8, 5987. (e) Zhou, C. X.; Larock, R. C. J. Org. Chem. 2006, 71,
3551. (f) Zhao, B.; Lu, X. Tetrahedron Lett. 2006, 47, 6765. (g) Yu, A.; Li,
J.; Cui, M.; Wu, Y. Synlett 2007, 19, 3063. (h) Behrends, M.; Savmarker,
J.; Sjoberg, P. J. R.; Larhed, M. ACS Catal. 2011, 1, 1455. (i) Lindh, J.;
Sjoberg, P. J. R.; Larhed, M. Angew. Chem., Int. Ed. 2010, 49, 7733.
(16) For examples involving rhodium catalysis, see: (a) Ueura, K.;
Satoh, T.; Miura, M. Org. Lett. 2005, 7, 2229. (b) Miura, T.; Murakami,
M. Org. Lett. 2005, 7, 3339. (c) Miura, T.; Murakami, M. Chem.
Commun. 2007, 3, 217.
(11) Peng, J. S.; Ye, M.; Zong, C. J.; Hu, F. Y.; Feng, L. T.; Wang,
X. Y.; Wang, Y. F.; Chen, C. X. J. Org. Chem. 2011, 76, 716.
r
10.1021/ol300813c
Published on Web 04/17/2012
2012 American Chemical Society