K. Ding et al. / Journal of Photochemistry and Photobiology A: Chemistry 220 (2011) 64–69
69
serve as the similar bridge. In the case of P(ZnTrPyP-AM), because
there are two N–H· · ·N(py) intermolecular hydrogen bands in every
one of the dimers, the dimer has a large association constant,
which explains why the dimer still exist even in very dilute aque-
ous solution. Besides, the four-coordinate zinc tripyridylporphyrin
will accept one and only one amino-group to form five-coordinate
complex, so this type of aggregate is limited to dimer rather than
extends to larger oligomers. With the increase of concentration,
it is only the increase in the number of dimers in large aggre-
gates and there are not strong electronic interactions even some
extent of hydrophobic association may exist between these dimers.
As a result, except the increase of intensity, no other changes
are observed in absorption spectra in concentrated aqueous solu-
tion of P(ZnTrPyP-AM). The addition of pyridine could destroy
the N–H· · ·N(py) intermolecular hydrogen bands by replacing the
coordinated amino-groups, and make the amphiphilic copolymer
dissolve thoroughly in the mixture of pyridine and water.
(b) N. Aratani, D. Kim, A. Osuka, Acc. Chem. Res. 42 (2009) 1922–1934;
(c) M. Fujitsuka, M. Hara, S. Tojo, A. Okada, V. Troiani, N. Solladie, T. Majima, J.
Phys. Chem. B 109 (2005) 33–35.
[5] M.J. Tait, F. Franks, Nature 230 (1971) 91–94.
[6] P.M.R. Paulo, S.M.B. Costa, Photochem. Photobiol. Sci. 2 (2003) 597–604.
[7] I. Prieto, J.M. Pedrosa, M.T. Martín-Romero, D. Möbius, L. Camacho, J. Phys.
Chem. B 104 (2000) 9966–9972.
[8] (a) P.J. Gonc¸ alves, L.P.F. Aggarwal, C.A. Marquezin, A.S. Ito, L. De Boni, N.M. Bar-
bosa Neto, J.J. Rodrigues Jr., S.C. Zílio, I.E. Borissevitch, J. Photochem. Photobiol.
A 181 (2006) 378–384;
(b) S.C.M. Gandini, V.E. Yushmanov, I.E. Borissevitch, M. Tabak, Langmuir 15
(1999) 6233–6243;
(c) L.M. Scolaro, C. Donato, M. Castriciano, A. Romeo, R. Romeo, Inorg. Chim.
Acta 300–302 (2000) 978–986;
(d) D.M. Togashi, S.M.B. Costa, A.J.F.N. Sobral, A.M.A.R. Gonsalves, J. Phys. Chem.
B 108 (2004) 11344–11356;
(e) S.M. Andrade, C. Teixeira, D.M. Togashi, S.M.B. Costa, A.J.F.N. Sobral, J. Pho-
tochem. Photobiol. A 178 (2006) 225–235.
[9] (a) M. Ali, S. Pandey, J. Photochem. Photobiol. A 207 (2009) 288–296;
(b) J.-J. Wu, H.-L. Ma, H.-S. Mao, Y. Wang, W.-J. Jin, J. Photochem. Photobiol. A
173 (2005) 296–300;
(c) D. Kuciauskas, J. Kiskis, G.A. Caputo, V. Gulbinas, J. Phys. Chem. B 114 (2010)
16029–16035.
[10] (a) M. Nowakowska, A. Karewicz, N. Loukine, J.E. Guillet, Polymer 43 (2002)
2003–2009;
4. Conclusions
(b) M. Kamachi, X.S. Cheng, T. Kida, A. Kajiwara, M. Shibasaka, S. Nagata, Macro-
molecules 20 (1987) 2665–2669;
(c) T. Konishi, A. Ikeda, M. Asai, T. Hatano, S. Shinkai, M. Fujitsuka, O. Ito, Y.
Tsuchiya, J.-I. Kikuchi, J. Phys. Chem. B 107 (2003) 11261–11266;
(d) M. Nowakowska, A. Karewicz, M. Kłos, S. Zapotoczny, Macromolecules 36
(2003) 4134–4139;
To construct the porphyrin architectures in the environment
closer to that in nature is a challenge. Water-soluble macro-
molecule containing small amount of porphyrin derivative is a
simple and easily understandable model. In copolymer P(ZnTrPyP-
AM) in this work, the zinc tripyridylporphyrins were axially
coordinated by amino-groups on backbone and self-assembled
into slipped cofacial structure with the help of two N–H· · ·N(py)
intermolecular hydrogen bands. This is an example for the observa-
tion of well-defined porphyrin dimer in water-soluble copolymers
containing hydrophobic porphyrin pendants. The slipped cofacial
dimer is a building block in artificial photosynthesis, so further
investigation about how to regulate the effects, factors and param-
eters are to be further studied.
(e) Y. Morishima, K. Saegusa, M. Kamachi, Macromolecules 28 (1995)
1203–1207.
[11] S. Malik, S.-I. Kawano, N. Fujita, S. Shinkai, Tetrahedron 63 (2007) 7326–7333.
[12] Q.F. Zhou, X.L. Zhu, Z.Q. Wen, Macromolecules 22 (1989) 491–493.
[13] C. Casas, B. Saint-Jalmes, C. Loup, C.J. Lacey, B. Meunier, J. Org. Chem. 58 (1993)
2913–2917.
[14] L.J. Bellamy, The Infrared Spectra of Complex Molecules, Methuen, London,
1958.
[15] E.B. Fleischer, A.M. Shachter, Inorg. Chem. 30 (1991) 3763–3769.
[16] (a) C.S. Bencosme, C. Romero, S. Simoni, Inorg. Chem. 24 (1985)
1603–1604;
(b) M. Nappa, J.S. Valentine, J. Am. Chem. Soc. 100 (1978) 5075–5080;
(c) C.L. Lin, M.Y. Fang, S.H. Cheng, J. Electroanal. Chem. 531 (2002) 155–162.
[17] G. Szintay, A. Horváth, Inorg. Chim. Acta 310 (2000) 175–182.
[18] (a) A. Osuka, K. Maruyama, J. Am. Chem. Soc. 110 (1988) 4454–4456;
References
(b) Z.S. Yoon, M.-C. Yoon, D. Kim, J. Photochem. Photobiol.
249–263.
[19] M. Kasha, H.R. Rawls, M.A. El-Bayoumi, Pure Appl. Chem. 11 (1965)
371–392.
[20] M.S. Paley, J.M. Harris, H. Looser, J.C. Baumert, G.C. Bjorklund, D. Jundt, R.J.
Twieg, J. Org. Chem. 54 (1989) 3774–3778.
[21] (a) Y. Kobuke, H. Miyaji, J. Am. Chem. Soc. 116 (1994) 4111–4112;
(b) E. Iengo, E. Zangrando, M. Bellini, E. Alessio, A. Prodi, C. Chiorboli, F. Scandola,
Inorg. Chem. 44 (2005) 9752–9762;
C 6 (2005)
[1] (a) I. Beletskaya, V.S. Tyurin, A.Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 109
(2009) 1659–1713;
(b) A. Satake, Y. Kobuke, Tetrahedron 61 (2005) 13–41;
(c) J. Wojaczyn´ ski, L. Latos-Graz˙ yn´ ski, Coord. Chem. Rev. 204 (2000) 113–171.
[2] (a) G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z.
Papiz, R.J. Cogdell, N.W. Isaacs, Nature 374 (1995) 517–521;
(b) A.M. van Oijen, M. Ketelaars, J. Köhler, T.J. Aartsma, J. Schmidt, Science 285
(1999) 400–402;
(c) C. Maeda, S. Yamaguchi, C. Ikeda, H. Shinokubo, A. Osuka, Org. Lett. 10 (2008)
549–552;
(c) J. Koepke, X.C. Hu, C. Muenke, K. Schulten, H. Michel, Structure 4 (1996)
581–597.
(d) C. Ikeda, A. Satake, Y. Kobuke, Org. Lett. 5 (2003) 4935–4938;
(e) H. Miyaji, J. Fujimoto, Tetrahedron Lett. 51 (2010) 2979–2982.
[22] (a) J. Janczak, Y.M. Idemori, Polyhedron 22 (2003) 1167–1181;
(b) A.V. Udal’tsov, L.A. Kazarin, V.A. Sinani, A.A. Sweshnikov, J. Photochem.
Photobiol. A 151 (2002) 105–119.
[3] (a) R. Takahashi, Y. Kobuke, J. Am. Chem. Soc. 125 (2003) 2372–2373;
(b) R.T. Stibrany, J. Vasudevan, S. Knapp, J.A. Potenza, T. Emge, H.J. Schugar, J.
Am. Chem. Soc. 118 (1996) 3980–3981.
[4] (a) H.S. Cho, H. Rhee, J.K. Song, C.-K. Min, M. Takase, N. Aratani, S. Cho, A. Osuka,
T. Joo, D. Kim, J. Am. Chem. Soc. 125 (2003) 5849–5860;