ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Donorꢀacceptor-Type Polymers Based
on Dithieno[2,3-b;7,6-b]carbazole Unit for
Photovoltaic Applications
Atsushi Kimoto* and Yusuke Tajima
Center for Intellectual Property Strategies, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
Received March 20, 2012
ABSTRACT
Dithieno[2,3-b;7,6-b]carbazole (TCZT), a type of heteropentacene with nitrogen and sulfur atoms, was synthesized with a focus on the unique
reactivity of carbazole via double intramolecular FriedelꢀCrafts acylation. A donorꢀacceptor-type polymer (PTCZTBT) was also synthesized,
and its physicochemical properties are reported.
Solution-processed organic photovoltaic (OPV) devices
consist of a bulk heterojunction with a π-conjugated
polymer (electron donor) and a fullerene derivative
(electron acceptor). In the past decade, these devices have
attracted increasing research interest from the viewpoint
of their many applications. Many studies have attempted
to fabricate optimized photovoltaic devices based on poly-
(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric
acid methyl ester (PC61BM); however, these devices
showed a maximum photoconversion efficiency of only
∼5%.1 This is because P3HT shows an absorption band at
around 550 nm with a HOMO energy level of ꢀ4.89 eV. As
a result, the poor light absorbing property at longer
wavelengths prevents efficient exciton (excited state) for-
mation, which is the origin of the short circuit current (Jsc)
in photovoltaic devices. In order to improve the light
absorbing property, Janssen proposed a new class of
donorꢀacceptor-type low-bandgap conjugated polymers
that consist of an electron-sufficient backbone and an
electron-deficient one.2 Broad light absorption has been
achieved by exploiting the intramolecular charge transfer
(CT) transition between these two backbones. This design
strategy has driven research on the use of π-conjugated
polymers for producing photovoltaic devices having high
photoconversion efficiency.
Poly(2,7-carbazole-alt-dithienylbenzothiadiazole) (PCD-
TBT, Figure 1), which was first reported by Leclerc, is
considered one of the most promising donorꢀacceptor-type
low-bandgap polymers.3 In attempts to synthesize a new
(3) (a) Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19,
2295. (b) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.;
^
Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M.
ꢀ
J. Am. Chem. Soc. 2008, 130, 732. (c) Park, S. H.; Roy, A.; Beaupre, S.;
Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.;
Heeger, A. J. Nat. Photonics 2009, 3, 297.
(4) (a) Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T.
J. Am. Chem. Soc. 2008, 130, 12828. (b) Wu, J. S.; Cheng, Y. J.; Dubosc,
M.; Hsieh, C.-H.; Chang, C. Y.; Hsu, C. S. Chem. Commun. 2010, 46,
3259. (c) Chen, C. H.; Cheng, Y. J.; Dubosc, M.; Hsieh, C. H.; Chu,
C. C.; Hsu, C. S. Chem. Asian J. 2010, 5, 2483. (d) Zheng, Q.; Jung, B. J.;
Sun, J.; Katz, H. E. J. Am. Chem. Soc. 2010, 132, 5394. (e) Zhang, Y.;
Zou, J.; Yip, H. L.; Chen, K. S.; Zeigler, D. F.; Sun, Y.; Jen, A. K. Y.
Chem. Mater. 2011, 23, 2289. (f) Cheng, Y. J.; Wu, J. S.; Shih, P. I.;
Chang, C. Y.; Jwo, P. C.; Kao, W. S.; Hsu, C. S. Chem. Mater. 2011, 23,
2361. (g) Bronstein, H.; Leem, D. S.; Hamilton, R.; Woebkenberg, P.;
King, S.; Zhang, W.; Ashraf, R. S.; Heeney, M.; Anthopoulos, T. D.;
de Mello, J.; McCulloch, I. Macromolecules 2011, 44, 6649. (h)
Cheedarala, R. K.; Kim, G. H.; Cho, S.; Lee, J.; Kim, J.; Song, H. K.;
Kim, J. Y.; Yang, C. J. Mater. Chem. 2011, 21, 843.
(1) (a) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv. Funct.
Mater. 2005, 15, 1617. (b) Dang, M. T.; Hirsch, L.; Wants, G. Adv.
Mater. 2011, 23, 3597.
(2) (a) van Duren, J. K. J.; Dhanabalan, A.; van Hal, P. A.; Janssen,
R. A. J. Synth. Met. 2001, 121, 1587. (b) Dhanabalan, A.; van Duren,
J. K. J.; Van Hal, P. A.; Van Dongen, J. L. J.; Janssen, R. A. J. Adv.
Mater. 2001, 11, 255.
r
10.1021/ol300709u
XXXX American Chemical Society