the ATU program. JB acknowledges support by projects from
Ministerio de Ciencia e Innovacion (MICINN) of Spain
´
(Consolider HOPE CSD2007-00007, MAT2010-19827), and
Generalitat Valenciana (PROMETEO/2009/058). SRR thanks
financial support from Bancaixa foundation under project
Innova 11I272. CYY and EWGD acknowledge support
by projects from National Science Council of Taiwan and
Ministry of Education of Taiwan, under the ATU program.
Notes and references
1 (a) H. Imahori, T. Umeyama and S. Ito, Acc. Chem. Res., 2009, 42,
1809–1818; (b) M. V. Martınez-Dıaz, G. de la Torre and T. Torres,
´ ´
Chem. Commun., 2010, 46, 7090–7108; (c) X.-F. Wang and
H. Tamiaki, Energy Environ. Sci., 2010, 3, 94–106.
2 (a) C.-W. Lee, H.-P. Lu, C.-M. Lan, Y.-L. Huang, Y.-R. Liang,
W.-N. Yen, Y.-C. Liu, Y.-S. Lin, E. W.-G. Diau and C.-Y. Yeh,
Chem.–Eur. J., 2009, 15, 1403–1412; (b) H.-P. Lu, C.-L. Mai,
C.-Y. Tsia, S.-J. Hsu, C.-P. Hsieh, C.-L. Chiu, C.-Y. Yeh and
E. W.-G. Diau, Phys. Chem. Chem. Phys., 2009, 11, 10270–10274;
(c) H.-P. Lu, C.-Y. Tsai, W.-N. Yen, C.-P. Hsieh, C.-W. Lee,
C.-Y. Yeh and E. W.-G. Diau, J. Phys. Chem. C, 2009, 113,
20990–20997; (d) C.-P. Hsieh, H.-P. Lu, C.-L. Chiu, C.-W. Lee,
S.-H. Chuang, C.-L. Mai, W.-N. Yen, S.-J. Hsu, E. W.-G. Diau
and C.-Y. Yeh, J. Mater. Chem., 2010, 20, 1127–1134;
(e) T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau
Fig. 3 (a) Capacitance, (b) transport resistance, and (c) recombina-
tion resistance of YD20–YD22 dyes in DSSC plotted with respect to
the equivalent common conduction band voltage (ꢀVecb).
these conditions, we transfer Fig. 2a–c into Fig. 3a–c, which
show Cm (a), Rtr (b), and Rrec (c) as a function of ꢀVecb. While
the chemical capacitance (Fig. 3a) and the transport resistance
(Fig. 3b) of the three dyes match quite well, the recombination
resistance (Fig. 3c) of the YD21 device is much smaller
compared to that of the YD20 and YD22 devices. In other
words, charge recombination is a major problem for the poor
performance of the YD21 device. These results allow us to
make a conclusion: compared to the YD20 device, the smaller
and M. Gratzel, Angew. Chem., Int. Ed., 2010, 49, 6646–6649.
¨
3 (a) C.-Y. Lin, C.-F. Lo, L. Luo, H.-P. Lu, C.-S. Hung and E. W.-G.
Diau, J. Phys. Chem. C, 2009, 113, 755–764; (b) C.-Y. Lin, Y.-C. Wang,
S.-J. Hsu, C.-F. Lo and E. W.-G. Diau, J. Phys. Chem. C, 2010, 114,
687–693; (c) C.-F. Lo, S.-J. Hsu, C.-L. Wang, Y.-H. Cheng, H.-P. Lu,
E. W.-G. Diau and C.-Y. Lin, J. Phys. Chem. C, 2010, 114,
12018–12023; (d) C.-L. Wang, Y.-C. Chang, C.-M. Lan, C.-F. Lo,
E. W.-G. Diau and C.-Y. Lin, Energy Environ. Sci., 2011, 4, 1788–1795.
4 A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K.
Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and
M. Gratzel, Science, 2011, 334, 629–634.
¨
5 (a) C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote,
V
OC of YD22 was due to a small shift in conduction band but
the smaller VOC of YD21 was due to a significant charge
recombination. From the structural viewpoint, the use of
cyanoacrylic acid as an acceptor and an anchoring group
in YD21 might provide more free space (less amount of
dye-loading) for the charge recombination than the use of
the rigid ethynylbenzoic acid in YD20 and YD22. Moreover,
YD21 might be tilted on the surface of TiO2 for the charge
recombination to occur more easily.
L. Alibabaei, C. Ngoc-Ie, J.-D. Decoppet, J.-H. Tsai, C. Gratzel,
¨
3103–3109; (b) Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi,
F. Gao and P. Wang, J. Phys. Chem. C, 2009, 113, 6290–6297;
(c) Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and
P. Wang, ACS Nano, 2010, 4, 6032–6038.
6 (a) Y.-C. Chang, C.-L. Wang, T.-Y. Pan, S.-H. Hong, C.-M. Lan,
H.-H. Kuo, C.-F. Lo, H.-Y. Hsu, C.-Y. Lin and E. W.-G. Diau,
Chem. Commun., 2011, 47, 8910–8912; (b) C.-L. Wang, C.-M. Lan,
S.-H. Hong, Y.-F. Wang, T.-Y. Pan, C.-W. Chang, H.-H. Kuo,
M.-Y. Kuo, E. W.-G. Diau and C.-Y. Lin, Energy Environ. Sci.,
2012, DOI: 10.1039/C2EE03308A, Advance Article.
7 (a) G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu and
P. Wang, Chem. Commun., 2009, 2198–2200; (b) Z. Ning and
H. Tian, Chem. Commun., 2009, 5483–5495; (c) Z. Ning, Y. Fu
and H. Tian, Energy Environ. Sci., 2010, 3, 1170–1181.
8 F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero and
J. Bisquert, Phys. Chem. Chem. Phys., 2011, 13, 9083–9118.
´ ´ ´
9 E. M. Barea, J. Ortiz, F. J. Paya, F. Fernandez-Lazaro,
F. Fabregat-Santiago, A. Sastre-Santos and J. Bisquert, Energy
Environ. Sci., 2010, 3, 1985–1994.
10 (a) E. M. Barea, C. Zafer, B. Gultekin, B. Aydin, S. Koyuncu,
S. Icli, F. F. Santiago and J. Bisquert, J. Phys. Chem. C, 2010, 114,
19840–19848; (b) E. M. Barea, V. Gonzalez-Pedro, T. Ripolles-
´ ´
¨
C.-G. Wu, S. M. Zakeeruddin and M. Gratzel, ACS Nano, 2009, 3,
In conclusion, although the concept for molecular design
with the cyanoacrylic acid acceptor has been widely applied in
highly efficient organic dyes,7 such an approach does not work
well for the porphyrin sensitizers as demonstrated herein. The
greater performance in the YD20 device than the other two
devices is attributed to its rigid structural feature for a larger
amount of dye-loading, which combined with the higher
recombination resistance and diffusion length yields to larger
JSC and VOC. Modification of the porphyrin structure with
extended p-conjugation for better light harvesting is feasible to
boost up the device performance in the near future.
This work was partially supported by National Science
Council of Taiwan and Ministry of Education of Taiwan, under
Sanchis, H.-P. Wu, L.-L. Li, C.-Y. Yeh, E. W.-G. Diau and
J. Bisquert, J. Phys. Chem. C, 2011, 115, 10898–10902.
c
4370 Chem. Commun., 2012, 48, 4368–4370
This journal is The Royal Society of Chemistry 2012