2188
PATHAK AND CHAUHAN
ANTIMICROB. AGENTS CHEMOTHER.
19. Liu, Z., et al. 2006. Multivalent antimicrobial peptides from a reactive poly-
mer scaffold. J. Med. Chem. 49:3436–3439.
20. Loh, B., C. Grant, and R. E. Hancock. 1984. Use of the fluorescent probe
1-N-phenylnaphthylamine to study the interactions of aminoglycoside anti-
biotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob.
Agents Chemother. 26:546–551.
21. Marr, A. K., W. J. Gooderham, and R. E. Hancock. 2006. Antibacterial
peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin.
Pharmacol. 6:468–472.
22. Mathur, P., N. R. Jagannathan, and V. S. Chauhan. 2007. Alpha, beta-
dehydrophenylalanine containing cecropin-melittin hybrid peptides: confor-
mation and activity. J. Pept. Sci. 13:253–262.
23. Mathur, P., S. Ramakumar, and V. S. Chauhan. 2004. Peptide design using
alpha,beta-dehydro amino acids: from beta-turns to helical hairpins. Bio-
polymers 76:150–161.
24. Nagpal, S., V. Gupta, K. J. Kaur, and D. M. Salunke. 1999. Structure-
function analysis of tritrypticin, an antibacterial peptide of innate immune
origin. J. Biol. Chem. 274:23296–23304.
25. Nguyen, L. T., et al. 2010. Serum stabilities of short tryptophan- and argin-
ine-rich antimicrobial peptide analogs. PLoS One 5:e12684.
26. Park, C. B., H. S. Kim, and S. C. Kim. 1998. Mechanism of action of the
antimicrobial peptide buforin II: buforin II kills microorganisms by pene-
trating the cell membrane and inhibiting cellular functions. Biochem. Bio-
phys. Res. Commun. 244:253–257.
27. Patch, J. A., and A. E. Barron. 2002. Mimicry of bioactive peptides via
non-natural, sequence-specific peptidomimetic oligomers. Curr. Opin.
Chem. Biol. 6:872–877.
28. Peschel, A., and H. G. Sahl. 2006. The co-evolution of host cationic antimi-
crobial peptides and microbial resistance. Nat. Rev. Microbiol. 4:529–536.
29. Ramagopal, U. A., S. Ramakumar, D. Sahal, and V. S. Chauhan. 2001. De
novo design and characterization of an apolar helical hairpin peptide at
atomic resolution: compaction mediated by weak interactions. Proc. Natl.
Acad. Sci. U. S. A. 98:870–874.
30. Rathinakumar, R., and W. C. Wimley. 2008. Biomolecular engineering by
combinatorial design and high-throughput screening: small, soluble peptides
that permeabilize membranes. J. Am. Chem. Soc. 130:9849–9858.
31. Reddy, K. V., R. D. Yedery, and C. Aranha. 2004. Antimicrobial peptides:
premises and promises. Int. J. Antimicrob. Agents 24:536–547.
32. Ringstad, L., A. Schmidtchen, and M. Malmsten. 2006. Effect of peptide
length on the interaction between consensus peptides and DOPC/DOPA
bilayers. Langmuir 22:5042–5050.
trum of activity, enhanced proteolytic resistance, and faster
membrane permeabilization kinetics, based on which novel
potent antimicrobials could be produced.
ACKNOWLEDGMENTS
We thank the Council of Scientific and Industrial Research, India,
for financial assistance. We acknowledge core funding from ICGEB,
New Delhi, India.
We are grateful to Dinkar Sahal, ICGEB, New Delhi, India, for
providing strains of E. coli and S. aureus. We acknowledge Rashmi
Shrivastva from the Immunology Group, ICGEB, for help in mass
spectrometry and Ruchita Pal from the Advanced Instrumentation
Research Facility (AIRF), JNU, for providing instrumental support for
electron microscopy. We also thank Manjula Kalia for her help in
taking confocal images. We thank anonymous reviewers for their con-
structive criticism that has enriched our work.
REFERENCES
1. Andersson, D. I., and D. Hughes. 2010. Antibiotic resistance and its cost: is
it possible to reverse resistance? Nat. Rev. Microbiol. 8:260–271.
2. Arnusch, C. J., et al. 2007. Enhanced membrane pore formation by multi-
meric/oligomeric antimicrobial peptides. Biochemistry 46:13437–13442.
3. Bílikova´, K., et al. 2002. Apisimin, a new serine-valine-rich peptide from
honeybee (Apis mellifera L.) royal jelly: purification and molecular charac-
terization. FEBS Lett. 528:125–129.
4. Brogden, K. A. 2005. Antimicrobial peptides: pore formers or metabolic
inhibitors in bacteria? Nat. Rev. Microbiol. 3:238–250.
5. Dathe, M., and T. Wieprecht. 1999. Structural features of helical antimicro-
bial peptides: their potential to modulate activity on model membranes and
biological cells. Biochim. Biophys. Acta 1462:71–87.
6. Daugelavicius, R., E. Bakiene, and D. H. Bamford. 2000. Stages of polymyxin
B interaction with the Escherichia coli cell envelope. Antimicrob. Agents
Chemother. 44:2969–2978.
7. Deslouches, B., et al. 2005. De novo generation of cationic antimicrobial
peptides: influence of length and tryptophan substitution on antimicrobial
activity. Antimicrob. Agents Chemother. 49:316–322.
8. Dewan, P. C., A. Anantharaman, V. S. Chauhan, and D. Sahal. 2009. Anti-
microbial action of prototypic amphipathic cationic decapeptides and their
branched dimers. Biochemistry 48:5642–5657.
9. Fernandez-Lopez, S., et al. 2001. Antibacterial agents based on the cyclic
D,L-alpha-peptide architecture. Nature 412:452–455.
10. Giangaspero, A., L. Sandri, and A. Tossi. 2001. Amphipathic alpha helical
antimicrobial peptides. Eur. J. Biochem. 268:5589–5600.
11. Hancock, R. E., and A. Rozek. 2002. Role of membranes in the activities of
antimicrobial cationic peptides. FEMS Microbiol. Lett. 206:143–149.
12. Hancock, R. E., and H. G. Sahl. 2006. Antimicrobial and host-defense pep-
tides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24:1551–
1557.
33. Rotem, S., and A. Mor. 2009. Antimicrobial peptide mimics for improved
therapeutic properties. Biochim. Biophys. Acta 1788:1582–1592.
34. Strøm, M. B., et al. 2003. The pharmacophore of short cationic antibacterial
peptides. J. Med. Chem. 46:1567–1570.
35. Stro¨mstedt, A. A., M. Pasupuleti, A. Schmidtchen, and M. Malmsten. 2009.
Evaluation of strategies for improving proteolytic resistance of antimicrobial
peptides by using variants of EFK17, an internal segment of LL-37. Antimi-
crob. Agents Chemother. 53:593–602.
36. Subbalakshmi, C., E. Bikshapathy, N. Sitaram, and R. Nagaraj. 2000. An-
tibacterial and hemolytic activities of single tryptophan analogs of indolici-
din. Biochem. Biophys. Res. Commun. 274:714–716.
37. Tam, J. P., Y. A. Lu, and J. L. Yang. 2002. Antimicrobial dendrimeric
peptides. Eur. J. Biochem. 269:923–932.
13. Haug, B. E., W. Stensen, T. Stiberg, and J. S. Svendsen. 2004. Bulky non-
proteinogenic amino acids permit the design of very small and effective
cationic antibacterial peptides. J. Med. Chem. 47:4159–4162.
38. Tossi, A., L. Sandri, and A. Giangaspero. 2000. Amphipathic, alpha-helical
antimicrobial peptides. Biopolymers 55:4–30.
14. Haukland, H. H., H. Ulvatne, K. Sandvik, and L. H. Vorland. 2001. The
antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial
cytoplasmic membrane and reside in the cytoplasm. FEBS Lett. 508:389–393.
15. Javadpour, M. M., et al. 1996. De novo antimicrobial peptides with low
mammalian cell toxicity. J. Med. Chem. 39:3107–3113.
16. Kaiser, E., R. L. Colescott, C. D. Bossinger, and P. I. Cook. 1970. Color test
for detection of free terminal amino groups in the solid-phase synthesis of
peptides. Anal. Biochem. 34:595–598.
39. Vaara, M. 1992. Agents, that increase the permeability of the outer mem-
brane. Microbiol. Rev. 56:395–411.
40. Wade, D., et al. 1990. All-D amino acid-containing channel-forming antibi-
otic peptides. Proc. Natl. Acad. Sci. U. S. A. 87:4761–4765.
41. Wayne, P. A. 1999. Methods for determining bactericidal activity of antimi-
crobial agents; approved guideline. Document M26-A. Clinical and Labora-
tory Standards Institute, Wayne, PA.
42. Wu, M., E. Maier, R. Benz, and R. E. Hancock. 1999. Mechanism of inter-
action of different classes of cationic antimicrobial peptides with planar
bilayers and with the cytoplasmic membrane of Escherichia coli. Biochem-
istry 38:7235–7242.
17. Kragol, G., et al. 2001. The antibacterial peptide pyrrhocoricin inhibits the
ATPase actions of DnaK and prevents chaperone-assisted protein folding.
Biochemistry 40:3016–3026.
18. Liu, D., and W. F. DeGrado. 2001. De novo design, synthesis, and charac-
terization of antimicrobial beta-peptides. J. Am. Chem. Soc. 123:7553–7559.
43. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature
415:389–395.