Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Furthermore, the difference in the binding mode of
macrocycles 1a and 1b (2:1 vs. 1:1) suggests that the van der
Waals force constitute another factor to effect the cooperative
action in forming the complexes. However, the essence of
each specific interaction that is responsible for the collective
cooperativity is still hardly understood.
In conclusion, we demonstrate strong positive allosteric
cooperativity in solution of shape-persistent cyclo[8]aramide-
based ternary complexes. A cooperativity factor of 165 is
achieved with a bipyridinium salt as a result of combined weak
interactions including π-π stacking, hydrogen bonding, cation-
dipole interaction and van der Waals force. Increasing the
polarity of solvent system tends to raise positive allosteric
cooperativity. Also noteworthy in this work is the first single
crystal structure of this series of H-bonded aromatic amide
macrocycles of larger size. These findings offer opportunities
for constructing mechanically interlocked molecules with H-
bonded aromatic amide macrocycles of large lumen.
DOI: 10.1039/C9CC00925F
2013, 1046, 110-115; (d) Y.-L. Ma, H. Ke, A. Valkonen, K.
Rissanen and W. Jiang, Angew. Chem. Int. Ed., 2018, 57, 709-
713; (e) H. Chai, L. Yang, H. Ke, X. Pang and W. Jiang, Chem.
Commun., 2018, 54, 7677-7680; (f) W.-B. Hu, C.-D. Xie, W.-J.
Hu, X.-L. Zhao, Y. A. Liu, J.-C. Huo, J.-S. Li, B. Jiang and K.
Wen, J. Org. Chem., 2015, 80, 7994-8000.
E. M. Zahran, Y. Hua, S. Lee, A. H. Flood and L. G. Bachas,
Anal. Chem., 2011, 83, 3455-3461.
(a) D.-W. Zhang, X. Zhao, J.-L. Hou and Z.-T. Li, Chem. Rev.,
2012, 112, 5271–5316; (b) K. Yamato, M. Kline and B. Gong,
Chem. Commun., 2012, 48, 12142–12158; (c) B. Gong and Z.
Shao, Acc. Chem. Res., 2013, 46, 2856–2866; (d) H. Fu, Y.
Liu and H. Zeng, Chem. Commun., 2013, 49, 4127–4144.
8
9
10 (a) J. Zhang and J. S. Moore, J. Am. Chem. Soc., 1994, 116,
2655–2656; (b) E. G. Sheetz, B. Qiao, M. Pink and A. H.
Flood, J. Am. Chem. Soc., 2018, 140, 7773-7777.
11 (a) L. J. Zhong, L. Chen, W. Feng, S. L. Zou, Y. A. Yang, N. Liu
and L. H. Yuan, J. Incl. Phenom. Macrocycl. Chem., 2012, 72,
367-373; (b) H. Fu, Y. Liu and H. Zeng, Chem. Commun.,
2013,49, 4127-4144.
12 C. Ren, J. Shen and H. Zeng, Org. Lett., 2015, 17, 5946-5949.
13 (a) A. J. Helsel, A. L. Brown, K. Yamato, W. Feng, L. H. Yuan,
A. J. Clements, S. V. Harding, G. Szabo, Z. Shao and B. Gong,
J. Am. Chem. Soc., 2008, 130, 15784-15785; (b) X. Wei, G.
Zhang, Y. Shen, Y. Zhong, R. Liu, N. Yang, F. Y. Al-Mkhaizim,
M. A. Kline, L. He, M. Li, Z. Lu, Z. Shao and B. Gong, J. Am.
Chem. Soc., 2016, 138, 2749-2754.
14 X. W. Li, B. Li, L. Chen, J. C. Hu, C. D. Y. Wen, Q. D. Zheng, L.
X. Wu, H. Q. Zeng, B. Gong and L. H. Yuan, Angew. Chem.
Int. Ed., 2015, 54, 11147-11152.
We are grateful to the National Natural Science Foundation
of China (21572143), Open Project of Key Laboratory for
Radiation Physics and Technology of Ministry of Education
(2018SCURPT11), and Open Project of State Key Laboratory of
Supramolecular Structure and Materials (SKLSSM201831).
Analytical
& Testing Center of Sichuan University is
acknowledged for NMR analysis (Dr. Deng).
15 (a) W. Pan, L. J. Mao, M. S. Shi, Y. H. Fu, X. M. Jiang, W. Feng,
Y. Z. He, D. G. Xu and L. H. Yuan, New. J. Chem., 2018, 42,
3857-3866; (b) K. Kang, J. A. Lohrman, S. Nagarajan, L. Chen,
P. C. Deng, X. Shen, K. R. Fu, W. Feng, D. W. Johnson and L.
H. Yuan, Org. Lett., 2019, 21, 652-655.
16 (a) L. H. Yuan, W. Feng, K. Yamato, A. R. Sanford, D. G. Xu,
H. Guo and B. Gong, J. Am. Chem. Soc., 2004, 126, 11120–
11121; (b) W. Feng, K. Yamato, L. Q. Yang, J. S. Ferguson, L.
J. Zhong, S. L. Zou, L. H. Yuan, X. C. Zeng and B. Gong, J. Am.
Chem. Soc., 2009, 131, 2629–2637; (c) Y. A. Yang, W. Feng
and L. H. Yuan, Chem. J. Chin. Univ., 2011, 32, 1950–1961.
17 X. W. Li, X. Y. Yuan, P. C. Deng, L. Chen, Y. Ren, C. Y. Wang, L.
X. Wu, W. Feng, B. Gong and L. H. Yuan, Chem. Sci., 2017, 8,
2091-2100.
Notes and references
1
(a) C. A. Hunter and H. L. Anderson, Angew. Chem. Int. Ed.,
2009, 48, 7488-7499; (b) G. Ercolani and L. Schiaffino,
Angew. Chem. Int. Ed., 2011, 50, 1762-1768; (c) A. S.
Mahadevi and G. N. Sastry, Chem. Rev., 2016, 116, 2775-
2825; (d) L. K. S. von Krbek, C. A. Schalley and P.
Thordarson, Chem. Soc. Rev., 2017, 46, 2622-2637.
A. Whitty, Nat. Chem. Biol., 2008, 4, 435-439.
(a) R. Molina-Muriel, G. Aragay, E. C. Escudero-Adán and P.
Ballester, J. Org. Chem. 2018, 83, 13507-13514; (b) J.
Mendez-Arroyo, J. Barroso-Flores, A. M. Lifschitz, A. A.
Sarjeant, C. L. Stern and C. A. Mirkin, J. Am. Chem. Soc.,
2014, 136, 10340-10348; (c) S. Le Gac, J. Marrot, O. Reinaud
and I. Jabin, Angew. Chem. Int. Ed., 2006, 45, 3123-3126; (d)
C. M. Davis, J. M. Lim, K. R. Larsen, D. S. Kim, Y. M. Sung, D.
M. Lyons, V. M. Lynch, K. A. Nielsen, J. O. Jeppesen, D. Kim, J.
S. Park and J. L. Sessler, J. Am. Chem. Soc., 2014, 136,
10410-10417; (e) N. K. Beyeh, A. Ala-Korpi, F. Pan, H. H. Jo,
E. V. Anslyn and K. Rissanen, Chem. Eur. J., 2015, 21, 9556-
9562; (f) O. Bistri, B. Colasson and O. Reinaud, Chem. Sci.,
2012, 3, 811-818.
2
3
18 S. L. Zou, Y. Z. He, Y. A. Yang, Y. Zhao, L. H. Yuan, W. Feng, K.
Yamato and B. Gong, Synlett, 2009, 9, 1437–1440.
19 J. C. Hu, L. Chen, Y. Ren, P. C. Deng, X. W. Li, Y. J. Wang, Y. M.
Jia, J. Luo, X. S. Yang, W. Feng and L. H. Yuan, Org. Lett.,
2013, 15, 4670-4673.
20 (a) L. Chen, X. Y. Yuan, Z. X. Wang, Y. R. Luo, W. Huang, S.
Zhang, W. L. Yuan, S. Qin, G. H. Tao and L. H. Yuan, Asian J.
Org. Chem., 2016, 5, 966-970; (b) M. Xu, L. Chen, Y. M. Jia,
L. J. Mao, W. Feng, Y. Ren and L. H. Yuan, Supramol. Chem.,
2015, 27, 436-443; (c) Y. Z. He, M. Xu, R. Z. Gao, X. W. Li, F.
X. Li, X. D. Wu, D. G. Xu, H. Q. Zeng and L. H. Yuan, Angew.
Chem., 2014, 126, 12028-12033; (d) K. Kang, W. Huang, Y.
H. Fu, L. Chen, J. C. Hu, Y. Ren, W. Feng and L. H. Yuan,
Supramol. Chem., 2017, 29, 1-11; (e) L. Chen, Z. Y. Peng, S.
Liu, X. W. Li, R. Z. Chen, Y. Ren, W. Feng and L. H. Yuan, Org.
Lett., 2015, 17, 5950-5953; (f) L. J. Mao, W. Pan, Y. H. Fu, L.
Chen, M. Xu, Y. Ren, W. Feng and L. H. Yuan, Org. Lett.,
2017, 19, 18-21.
4
5
(a) M. Ménand, M. Sollogoub, B. Boitrel and S. Le Gac, Chem.
Eur. J., 2018, 24, 5804-5812; (b) C. Kremer, and A. Lützen,
Chem. Eur. J., 2014, 20, 8852–8855.
(a) L. K. S. von Krbek, A. J. Achazi, M. Solleder, M. Weber, B.
Paulus and C. A. Schalley, Chem. Eur. J., 2016, 22, 15475-
15484; (b) K. Nowosinski, L. K. S. von Krbek, N. L. Traulsen
and C. A. Schalley, Org. Lett., 2015, 17, 5076-5097.
Z. Huang, K. Qin, G. Deng, G. Wu, Y. Bai, J.-F. Xu, Z. Wang, Z.
Yu, O. A. Scherman and X. Zhang, Langmuir, 2016, 32, 12352-
12360.
6
7
(a) K. J. Hartlieb, A. K. Blackburn, S. T. Schneebeli, R. S.
Forgan, A. A. Sarjeant, C. L. Stern, D. Cao and J. F. Stoddart
21 P. Thordarson, Chem. Soc. Rev., 2011, 40, 1305.
22 P. N. Taylor and H. L. Anderson, J. Am. Chem. Soc., 1999, 121,
11538-11545.
,
Chem. Sci., 2014, 5, 90–100; (b) H. Ikeda, S. Nishikawa, Y.
Yamamoto and A. Ueno, J. Mol. Catal. A: Chem., 2010, 328,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins