F. Estudiante-Negrete et al. / Inorganica Chimica Acta 387 (2012) 58–63
63
As with so many other analogous metallocycle examples, it is
References
possible that the reaction may proceed through the formation of
soluble nickel nanoparticles. Hence, in order to rule out this possi-
bility a mercury drop experiment [10] (see Section 2) was per-
formed with no appreciable difference in the performance of the
catalyst with or without the presence of Hg(0). It is noteworthy
the fact that the presence the Cl substituent at the Ni center does
not have to be substituted by a labile group in order to make this
catalysts reactive as has been the case for some palladium pincer
complexes in Heck couplings where silver additives are necessary.
It is possible that the enhanced reactivity observed may be related
to the more versatile redox behavior of the nickel center as has
been the case when similar systems are employed for the thioethe-
rification reaction (C–S cross coupling). Efforts aiming to shed
further light on the mechanism through which this catalyst pro-
ceeds in this process are currently under investigation in our labs.
In summary, we have successfully synthesized in high yields a
non-symmetric POCOP pincer ligand and its Ni(II) derivatives.
The non-symmetric nature of ligand (1) and its complex (2) is
clearly demonstrated by the 31P{1H} NMR experiments and
unequivocally exposed by single crystal X-ray diffraction experi-
ments. Preliminary catalytic evaluation of the Ni(II) derivative
(2), shows this species to be a very efficient and robust Ni(II) cata-
lyst which exhibits a comparable performance in the Suzuki–Miya-
ura cross coupling reactions as that of similar Pd(II) pincer systems
such as [PdCl{3-(n-C12H25)-C6H2-2,6-(OPPh2)2}] [15] albeit with
longer reaction periods (compare 15 versus 8 h) and larger, how-
ever still catalytic amounts of catalysts (compare 1% Ni versus
0.1% Pd). Another attractive characteristic of the present system
is the easy synthesis from cheap commercially available starting
materials and the use of considerable cheaper and biocompatible
Ni(II), thus making this system attractive for its potential applica-
tion in organic synthesis. Efforts aimed to extend the studies of the
reactivity of the species presented in this work in other cross cou-
pling reactions are currently under study in our laboratories.
[1] (a) M. Albrecht, G. van Koten, Angew. Chem., Int. Ed. 40 (2001) 3750;
(b) M.E. van der Boom, D. Milstein, Chem. Rev. 103 (2003) 1759;
(c) J.T. Singleton, Tetrahedron 59 (2003) 1837;
(d) D. Morales-Morales, Rev. Soc. Quim. Mex. 48 (2004) 338;
(e) K.J. Szabo, Synlett (2006) 811;
(f) D. Morales-Morales, C.M. Jensen (Eds.), The Chemistry of Pincer Compounds,
Elsevier, Amsterdam, The Netherlands, 2007;
(g) D. Morales-Morales, in: L. Kollár (Ed.), Modern Carbonylation Methods,
Wiley-VCH, Federal Republic of Germany, 2008, p. 20;
(h) D. Morales-Morales, in: L.A. Oro, C. Claver (Eds.), Iridium Complexes in
Organic Synthesis, Wiley-VCH, Federal Republic of Germany, 2009, p. 325;
(i) M. Albrecht, D. Morales-Morales, in: L. A. Oro, C. Claver (Eds.), Iridium
Complexes in Oragnic Synthesis, Wiley-VCH, Federal Republic of Germany,
2009, p. 299.;
(j) E.M. Schuster, M. Botoshansky, M. Gandelman, Angew. Chem., Int. Ed. 47
(2008) 4555.
[2] See for instance: (a) D. Morales-Morales, in: D. Morales-Morales, C.M. Jensen
(Eds.), The Chemistry of Pincer Compounds, Elsevier, Amsterdam, 2007, p. 151;
(b) D. Morales-Morales, Mini-Rev. Org. Chem. 5 (2008) 141. and references
therein.
[3] See for instance: (a) R. Franzen, Y. Xu, Can. J. Chem. 83 (2005) 266;
(b) N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457;
(c) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 102
(2002) 1359;
(d) B.K. Singh, N. Kaval, S. Tomar, E. Van der Eycken, V.S. Parmar, Org. Process
Res. Dev. 12 (2008) 468. and references therein.
current catalyst pricing.
[5] See for instance: (a) M. Weck, Polym. Int. 56 (2007) 453;
(b) C.R. South, C. Burd, M. Weck, Acc. Chem. Res. 40 (2007) 63. and references
therein.
[6] See for instance: (a) O. Baldovino-Pantaleón, S. Hernández-Ortega, D. Morales-
Morales, Adv. Synth. Catal. 348 (2006) 236;
(b) O. Baldovino-Pantaleón, S. Hernandez-Ortega, D. Morales-Morales, Inorg.
Chem. Commun. 8 (2005) 955;
(c) V. Gómez-Benítez, O. Baldovino-Pantaleón, C. Herrera-Álvarez, R.A.
Toscano, D. Morales-Morales, Tetrahedron Lett. 47 (2006) 5059.
[7] See for instance: (a) B-S. Zhang, W. Wang, D-D. Shao, X-Q. Hao, J-F. Gong, M-P.
Song, Organometallics 29 (2010) 2579;
(b) K. Inamoto, J.-I. Kuroda, E. Kwon, K. Hiroya, T. Doi, J. Organomet. Chem. 694
(2009) 389;
(c) K. Inamoto, J-I. Kuroda, K. Hiroya, Y. Noda, M. Watanabe, T. Sakamoto,
Organometallics 25 (2006) 3095;
(d) K. Inamoto, J-I. Kuroda, T. Sakamoto, K. Hiroya, Síntesis (2007) 2853.
[8] See for instance: J.M. Serrano-Becerra, D. Morales-Morales, Curr. Org. Synth. 6
(2009) 169. and references therein.
[9] (a) D. Morales-Morales, C. Grause, K. Kasaoka, R. Redón, R.E. Cramer, C.M.
Jensen, Inorg. Chim. Acta 958 (2000) 300;
Acknowledgements
(b) D. Morales-Morales, R. Redón, C. Yung, C.M. Jensen, Chem. Commun. (2000)
1619.
We would like to thank Chem. Eng. Luis Velasco Ibarra,
Dr. Francisco Javier Pérez Flores and M.Sc Ma. de las Nieves Zavala
for their invaluable help in the running of the FAB+-Mass and some
NMR spectra, respectively. The financial support of this research by
CONACYT (154732) and DGAPA-UNAM (IN201711) is gratefully
acknowledged.
[10] (a) D.R. Anton, R.H. Crabtree, Organometallics 2 (1983) 855;
(b) P. Foley, R. DiCosimo, G.M. Whitesides, J. Am. Chem. Soc. 102 (1980) 6713.
[11] Bruker AXS, SAINT Software Reference Manual, Madison, WI, 1998.
[12] G.M. Sheldrick, Sheldrick, SHELXS-97, Program for Structure Solution, Acta
Crystallogr., Sect. A 46 (1990) 467.
[13] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University
of Göttingen, Germany, 1998.
[14] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[15] M.A. Solano-Prado, F. Estudiante-Negrete, D. Morales-Morales, Polyhedron 29
(2010) 592.
[16] (a) A. Naghipour, Z.H. Ghasemi, D. Morales-Morales, J.M. Serrano-Becerra, C.M.
Jensen, Polyhedron 27 (2008) 1947;
Appendix A. Supplementary material
(b) J.M. Serrano-Becerra, S. Hernández-Ortega, D. Morales-Morales, Inorg.
Chim. Acta 363 (2010) 1306.
[17] See: (a) J. Dupont, C.S. Consorti, J. Spencer, Chem. Rev. 105 (2005) 2527. and
references therein;
(b) J. Dupont, M. Pfeffer (Eds.), Palladacycles. Synthesis, Characterization and
Applications, Wiley-VCH, Federal Republic of Germany, 2008.
[18] C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91 (1991) 165.
CCDC 862571 contains the supplementary crystallographic data
for complex 2, respectively. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at