ORGANIC
LETTERS
2012
Vol. 14, No. 10
2618–2621
Metal-Free Ortho CÀH Borylation
of 2-Phenoxypyridines under Mild
Conditions
Liting Niu,† Haijun Yang,† Ruji Wang,† and Hua Fu*,†,‡
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing
100084, P. R. China, and Key Laboratory of Chemical Biology (Guangdong Province),
Graduate School of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. China
Received April 12, 2012
ABSTRACT
An efficient metal-free ortho CÀH borylation has been developed via sequential borylation of substituted 2-phenoxypyridines with BBr3 following
esterification with pinacol. The corresponding aryl boronates were obtained in good yields. The synthesized aryl boronates can be easily
transformed into various useful products. Therefore, the present method makes functionalizations of aryl CÀH bonds easy.
Arylboronic acids and their derivatives are versatile
reagents in modern organic synthesis because they are air
stable and are readily transformed into other desired
products.1 On the other hand, intramolecular complexes
of nitrogen-containing π-conjugated molecules with NÀB
coordination have gained increasing attention from the
viewpoint of development of new π-electron materials.2
Traditional methods for preparation of the boron
compounds use the reactions of either organolithium or
magnesium reagents with boron electrophiles, but they
have a problem with functional-group compatibility. Later,
various alternative approaches to aryl boronates were
developed. Transition-metal-catalyzed, such as Pd-,3 Ni-,4
or Cu-catalyzed,5 borylation of aryl halides is a popular
strategy. Recently, the direct functionalization of unreac-
tive CÀH bonds has emerged as a very active field in
organic synthesis.6 The borylation of arene CÀH bonds
has also been developed under catalysis of transition-metal
catalysts, especially iridium catalysts,7,8 and the iridium-
catalyzed regioselectivity is typically driven by steric
† Department of Chemistry.
‡ Graduate School of Shenzhen.
(1) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Suzuki,
A.; Brown, H. C. Organic Synthesis via Boranes: Aldrich: Milwaukee, WI,
2003. (c) Miyaura, N. in Metal-Catalyzed Cross-Coupling Reactions, 2nd
ed.; Meijere, A. D., Diedrich, F., Eds.; Wiley-VCH: Weinheim, 2004; pp
125À162. (d) Hall, D. G. Boronic Acids; Wiley-VCH: Weinheim, 2005.
(2) For reviews on boron-containing π-electron materials, see: (a)
(4) For selected examples, see: (a) Morgan, A. B.; Jurs, J. L.; Tour,
J. M. J. Appl. Polym. Sci. 2000, 76, 1257. (b) Wilson, D. A.; Wilson, C. J.;
Rosen, B. M.; Percec, V. Org. Lett. 2008, 10, 4879. (c) Wilson, D. A.;
Wilson, C. J.; Moldoveanu, C.; Resmerita, A.-M.; Corcoran, P.; Hoang,
L. M.; Rosen, B. M.; Percec, V. J. Am. Chem. Soc. 2010, 132, 1800. (d)
Huang, K.; Yu, D.-G.; Zheng, S.-F.; Wu, Z.-H.; Shi, Z.-J. Chem.;Eur.
J. 2011, 17, 786. (e) Yamamoto, T.; Morita, T.; Takagi, J.; Yamakawa,
T. Org. Lett. 2011, 13, 5766.
(5) (a) Fang, H.; Kaur, G.; Yan, J.; Wang, B. Tetrahedron Lett. 2005,
46, 671. (b) Zhu, W.; Ma, D. Org. Lett. 2006, 8, 261. (c) Kleeberg, C.;
Dang, L.; Lin, Z. Y.; Marder, T. B. Angew. Chem., Int. Ed. 2009, 48, 5350.
(6) (a) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (b)
Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. (c)
Handbook of CÀH Transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim,
2005. (d) Godula, K.; Sames, D. Science 2006, 312, 67. (e) Topics in Current
Chemistry; Yu, J.-Q., Shi, Z.-J., Eds.; Springer: Berlin, 2010; Vol. 292.
(7) For recent reviews, see: (a) Mkhalid, I. A. I.; Barnard, J. H.;
Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(b) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
€
Entwistle, C. D.; Marder, T. B. Chem. Mater. 2004, 16, 4574. (b) Jakle,
F. Coord. Chem. Rev. 2006, 250, 1107. (c) Loudet, A.; Burgess, K. Chem.
Rev. 2007, 107, 4891. For recent selected examples, see: (d) Wakamiya,
A.; Taniguchi, T.; Yamaguchi, S. Angew. Chem., Int. Ed. 2006, 45, 3170.
(e) Baik, C.; Hudson, Z. M.; Amarne, H.; Wang, S. J. Am. Chem. Soc.
2009, 131, 14549. (f) Ishida, N.; Ikemoto, W.; Narumi, M.; Murakami,
M. Org. Lett. 2011, 13, 3008.
(3) For selected examples, see: (a) Ishiyama, T.; Murata, M.;
Miyaura, N. J. Org. Chem. 1995, 60, 7508. (b) Murata, M.; Watanabe,
S.; Masuda, Y. J. Org. Chem. 1997, 62, 6458. (c) Billingsley, K. L.;
Barder, T. E.; Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 5359.
(d) Molander, G. A.; Trice, S. L. J.; Dreher, S. D. J. Am. Chem. Soc. 2010,
132, 17701. (e) Kawamorita, S.; Ohmiya, H.; Iwai, T.; Sawamura, M.
Angew. Chem., Int. Ed. 2011, 50, 8363.
r
10.1021/ol300950r
Published on Web 05/01/2012
2012 American Chemical Society