RSC Advances
Paper
spectrometry. The [Cu2(H5L)(NO3)2]NO3$0.5H2O$2CH3CN was
dissolved in i-PrOH and the change in mass was monitored aer
24 h, 48 h and 72 h (Fig. S27†). Regarding the results from mass
spectroscopy, in solution, one coordinated nitrate was found to
be removed from Cu(1) of the coordination cluster (mass cal. ¼
969.9178 m/z, found ¼ 969.9068 m/z, Fig. S27†) resulting in
a free reactive site on copper. This allows a possible mechanism
for the A3 coupling reaction of this system to be proposed
(Fig. 5). Furthermore, the compound was tested as a catalyst for
click chemistry but without any success.
6 C. Vulpe, B. Levinson, S. Whitney and J. Gitschier, Nat.
Genet., 1993, 3, 7–13.
7 K. J. Barnham, C. L. Masters and A. I. Bush, Nat. Rev. Drug
Discovery, 2004, 3, 205–214.
8 I. Scheinberg and I. H. Sternlieb, Am. J. Clin. Nutr., 1996, 63,
842S–845S.
´
9 A. P. S. Gonzales, M. A. Firmino, C. S. Nomura, F. R. P. Rocha,
P. V. Oliveira and I. Gaubeur, Anal. Chim. Acta, 2009, 636,
198–204.
10 Y. Liu, P. Liang and L. Guo, Talanta, 2005, 68, 25–30.
11 Y. Zhou, J. Zhang, H. Zhou, Q. Zhang, T. Ma and J. Niu, J.
Lumin., 2012, 132, 1837–1841.
Conclusion
12 D. Zhang, Y. Ma and R. An, Res. Chem. Intermed., 2015, 41,
5059–5069.
Bis(methylene)bis(5-bromo-2-hydroxyl salicyloylhydrazone) can
be used as a multiple functionality ligand. Coordination
complexes formed with this ligand can be used as a highly
selective and sensitive uorescent sensor for Cu2+, Ni2+, Co2+
and Fe2+ ions. The molecular structure of the copper(II) complex
conrms the binding mode of the ligand with the metal to
ligand stoichiometry of 2 : 1 in line with results from a Job plot
analysis. The presence of a d–d band at 408 nm proves that the
copper is in the 2+ state. In addition, the application of the
[Cu2(H5L)(NO3)2]NO3$0.5H2O$2CH3CN for catalysing A3
coupling reactions was found to have high efficiency in
providing a wide range of products in high yields (>80%) with
catalytic loading of 1 mol% and 24 h reaction time. Moreover,
the stability of the catalytic system has been investigated and
the results show the catalyst is stable over 72 h in i-PrOH
solution. Furthermore, we extended the scope of this catalytic
system for copper catalysed azide–alkyne cycloaddition (CuAAC)
using benzyl azide and phenyl acetylene as a model reagent.
However, the expected triazole product was not obtained. This
can be explained by the fact that the Cu2+ is not usually suitable
for click chemistry.
13 X. Cheng, Y. Zhou, Y. Fang, Q. Rui and C. Yao, RSC Adv.,
2015, 5, 19465–19469.
14 Y. Hu, J. Zhang, Y. Z. Lv, X. H. Huang and S. L. Hu,
Spectrochim. Acta, Part A, 2016, 157, 164–169.
15 F. A. Abebe and E. Sinn, Tetrahedron Lett., 2011, 52, 5234–
5237.
16 Y. S. Mi, Z. Cao, Y. T. Chen, Q. F. Xie, Y. Y. Xu, Y. F. Luo,
J. J. Shi and J. N. Xiang, Analyst, 2013, 138, 5274–5280.
17 S. Prabhu, S. Saravanamoorthy, M. Ashok and S. Velmathi, J.
Lumin., 2012, 132, 979–986.
18 U. Fegade, S. K. Sahoo, S. Attarde, N. Singh and A. Kuwar,
Sens. Actuators, B, 2014, 202, 924–928.
19 H. Yu, J. Y. Lee, S. Angupillai, S. Wang, S. Feng,
S. Matsumoto and Y. A. Son, Spectrochim. Acta, Part A,
2015, 151, 48–55.
20 V. A. Peshkov, O. P. Pereshivko and E. V. Van Der Eycken,
Chem. Soc. Rev., 2012, 41, 3790–3807.
21 C.-J. L. Woo-Jin Yoo and L. Zhao, Aldrichimica Acta, 2011, 2,
43–51.
22 C. Wei, Z. Li and C. J. Li, Synlett, 2004, 9, 1472–1483.
23 L. Zani and C. Bolm, Chem. Commun., 2006, 41, 4263–4275.
24 I. Jesin and G. C. Nandi, Eur. J. Org. Chem., 2019, 16, 2704–
2720.
Conflicts of interest
25 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004–2021.
The authors declare no conict of interest.
26 C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem.,
2002, 67, 3057–3064.
27 Z. Liu, Z. Zhang, G. Zhu, Y. Zhou, L. Yang, W. Gao, L. Tong
and B. Tang, Org. Lett., 2019, 21, 7324–7328.
28 D. Castagnolo, N. Scalacci, A Toscani and K Lauder, Chem.
Rev., 2017, 117, 14091–14200.
Acknowledgements
We thank the DFG for funding through SFB/TRR 88 “3MET” and
the Helmholtz Association via POF STN. We would like to thank
Prof. Dr Dieter Fenske for collecting the crystallographic data.
29 B. V. Rokade, J. Barker and P. J. Guiry, Chem. Soc. Rev., 2019,
48, 4766–4790.
30 M. Llunell, D. Casanova, J. Cirera and S. Alvarez, SHAPE
version 2.1, Universitat de Barcelona, Barcelona, 2013.
References
1 D. T. Quang and J. S. Kim, Chem. Rev., 2010, 110, 6280–6301.
2 B. Kaur, N. Kaur and S. Kumar, Coord. Chem. Rev., 2018, 358, 31 C. Wei, Z. Li and C. J. Li, Org. Lett., 2003, 5, 4473–4475.
13–69.
32 L. Shi, Y. Q. Tu, M. Wang, F. M. Zhang and C. A. Fan, Org.
Lett., 2004, 6, 1001–1003.
33 Y. Zhang, P. Li, M. Wang and L. Wang, J. Org. Chem., 2009,
74, 4364–4367.
34 E. Loukopoulos, M. Kallitsakis, N. Tsoureas, A. Abdul-Sada,
N. F. Chilton, I. N. Lykakis and G. E. Kostakis, Inorg.
Chem., 2017, 56, 4898–4910.
3 M. Uauy, R. Olivares and M. Gonzalez, Am. J. Clin. Nutr.,
1998, 67, 952S–959S.
4 H. Tapiero, D. M. Townsend and K. D. Tew, Biomed.
Pharmacother., 2003, 57, 386–398.
5 D. J. Waggoner, T. B. Bartnikas and J. D. Gitlin, Neurobiol.
Dis., 1999, 6, 221–230.
40744 | RSC Adv., 2020, 10, 40739–40744
This journal is © The Royal Society of Chemistry 2020