and electron-rich heterocycles to the corresponding
isatins.10a,12
zinc-ProPhenol-catalyzedasymmetrictandem Michael ad-
ditionꢀtransesterification process that employs 3-hydro-
xyoxindoles as nucleophiles.
We wondered whether 3-hydroxyoxindole 1, an isatinic
anion equivalent, might undergo stereoselective addition
to electrophiles to afford 3-hydroxy-3-alkyloxindoles via a
formal umpolung13 strategy, providing a new approach to
highly functionalized 3-hydroxyoxindoles14 (Scheme 1).
Since the first synthesis of 115 there have been only a few
reports of its use in alkylation reactions.16 Moreover, there
are only a few direct catalytic highly enantioselective reac-
tions using R-disubstituted R-oxycarbonyl compounds,17
although the use of hydroxymethyl ketone derivatives
have been well studied.17e,f,18,19,20c Herein we report a
Scheme 2. Dinuclear Zinc-ProPhenol Complex-Catalyzed
Tandem Michael AdditionꢀTransesterification
(8) Addition of boronic acid derivatives: (a) Liu, Z.; Gu, P.; Shi, M.;
McDowell, P.; Li, G. Org. Lett. 2011, 13, 2314. (b) Shintani, R.; Takatsu, K.;
Hayashi, T. Chem. Commun. 2010, 46, 6822. (c) Lai, H.; Huang, Z; Wu, Q.;
Qin, Y. J. Org. Chem. 2009, 74, 283. (d) Toullec, P. Y.; Japt, R. B. C.; Vries,
J. G.; Feringa, B. L.; Minnaard, A. J. Org. Lett. 2006,8, 2715. (e) Shintani, R.;
Inoue, M.; Hayashi, T. Angew. Chem., Int. Ed. 2006, 45, 3353.
(9) Addition of aryl and alkenylsilanes: Tomita, D.; Yamatsugu, K.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946.
Our studies commenced with the evaluation of several
Michael acceptors for the desired process (Scheme 2).20
Cinnamoylpyrrole (4) and the corresponding indole 5 were
cleanly converted to spirocyclic oxindole 2a21 in excellent
yields with moderate diastereo- and enantioselectivities.
Attenuating the reactivity of the Michael acceptor by
employing methyl cinnamate (6) significantly increased
the enantioselectivity to 95% ee. In this case, open chain
product 3 was also isolated in 19% yield and 97% ee as a
single diastereomer. The corresponding phenyl ester based
Michael acceptor 7 afforded 2a exclusively in excellent
yield, 9.2:1 dr, and 96% ee. Subsequent variation of the
reaction temperature, solvent, metal, ligand, and substrate
did not improve upon this initial lead (Table 1, entry 1).
Lowering the reaction temperature to rt slightly decreased
the diastereoselectivity without affecting the enantioselec-
tivity (entry 2), but lowering the reaction concentration
significantly decreased the diastereoselectivity (entry 3).
The catalyst prepared in THF provided the desired prod-
uct in comparable enantioselectivity, albeit in lower yield
and diastereoselectivity (entry 4). When THF was em-
ployed as the solvent, 2a was obtained in 98% ee but with
modest diastereoselectivity (entry 5). The reaction was
sluggish in toluene and dichloromethane, presumably
due to poor solubility of 1a in either of these solvents
(entries 6 and 7). However, in both cases 1a was obtained
as a single diastereomer and with excellent enantioselec-
tivity. The analogous dinuclear magnesium catalyst22
furnished the desired product in only 51% ee and 2.3:1
(10) Allylation: (a) Hanhan, N. V.; Sahin, A. H.; Chang, T. W.;
Fettinger, J. C.; Franz, A. K. Angew. Chem. Int. Ed. 2010, 49, 744.
(b) Itoh, J.; Han, S. B.; Krische, M. J. Angew. Chem., Int. Ed. 2009,
48, 6313. (c) Qiao, X.-C.; Zhu, S.-F.; Zhou, Q.-L. Tetrahedron:
Asymmetry 2009, 20, 1254. (d) Kitajima, M.; Mori, I.; Arai, K.;
Kogure, N.; Takayama, H. Tetrahedron Lett. 2006, 47, 3199.
(11) (a) Hara, N.; Nakamura, S.; Shibata, N.; Toru, T. Adv. Synth.
Catal. 2010, 352, 1621. (b) Itoh, T; Ishikawa, H.; Hayashi, Y. Org. Lett.
2009, 11, 3854. (c) Nakamura, S.; Hara, N.; Nakashima, H.; Kubo, K.;
Shibata, N.; Toru, T. Chem.;Eur. J. 2008, 14, 8079. (d) Malkov, A. V.;
ꢀꢁ
ꢀ
Kabeshov, M. A.; Bella, M.; Kysilka, O.; Malyshev, D. A.; Pluhackova,
ꢁ
ꢀ
K.; Kocovsky, P. Org. Lett. 2007, 9, 5473. (e) Chen, J.-R.; Liu, X.-P.;
Zhu, X.-Y.; Li, L.; Qiao, Y.-F.; Zhang, J.-M.; Xiao, W.-J. Tetrahedron
2007, 63, 10437. (f) Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.;
Broxterman, Q. B.; Tomasini, C. J. Org. Chem. 2005, 70, 7418.
(12) Deng, J.; Zhang, S.; Ding, P.; Jiang, H.; Wang, W.; Li, J. Adv.
Synth. Catal. 2010, 352, 833.
(13) Seebach, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 239.
(14) During review of our manuscript, we found a similar report
using 3-hydroxyoxindoles as nucleophiles: Bergonzini, G.; Melchiorre,
P. Angew. Chem., Int. Ed. 2012, 51, 971.
(15) Michaelis, A. Chem. Ber. 1897, 30, 2809.
(16) (a) Hallmann, G. Chem. Ber. 1962, 95, 1138. (b) Hellmann, H.;
ꢀ
Hallmann, G.; Lingens, F. Chem. Ber. 1953, 86, 1346. (c) Stolle, R.;
Merkle, M. J. Prakt. Chem. 1934, 139, 329.
(17) (a) Misaki, T.; Kawano, K.; Sugimura, T. J. Am. Chem. Soc.
2011, 133, 5695. (b) Misaki, T.; Takimoto, G.; Sugimura, T. J. Am.
Chem. Soc. 2011, 133, 5695. (c) Hynes, P. S.; Stranges, D.; Stupple, P. A.;
Guarna, A.; Dixon, D. J. Org. Lett. 2007, 9, 2107. (d) Trost, B. M.;
Dogra, K.; Franzini, M. J. Am. Chem. Soc. 2004, 126, 1944. (e) Harada,
S.; Kumagai, N.; Kinoshita, T.; Matsunaga, S.; Shibasaki, M. J. Am.
Chem. Soc. 2003, 125, 2582. (f) Kumagai, N.; Matsunaga, S.; Kinoshita,
T.; Harada, S.; Okada, S.; Sakamoto, S.; Yamaguchi, K.; Shibasaki, M.
J. Am. Chem. Soc. 2003, 125, 2169.
(18) Pioneering organocatalytic approaches: (a) Enders, D.; Grondal,
C.; Vrettou, M.; Raabe, G. Angew. Chem., Int. Ed. 2005, 44, 4079.
(b) Westermann, B.; Neuhaus, C. Angew. Chem., Int. Ed. 2005, 44, 4077.
(c) Notz, W.; Watanabe, S.; Chowdari, N. S.; Zhong, G.; Betancort, J. M.;
Tanaka, F.; Barbas, C. F., III. Adv. Synth. Catal. 2004, 346, 1131. (d) List, B.;
Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827.
(19) Multimetallic catalysis: (a) Matsunaga, S.; Sugita, M.; Yamagiwa,
N.; Handa, S.; Yamaguchi, A.; Shibasaki, M. Bull. Chem. Soc. Jpn.
2006, 79, 1906. (b) Yamaguchi, A.; Matsunaga, S.; Shibasaki, M.
Tetrahedron Lett. 2006, 47, 3985. (c) Harada, S.; Handa, S.; Matsunaga,
S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4365. (d) Sugita, M.;
Yamaguchi, A.; Yamagiwa, N.; Handa, S.; Matsunaga, S.; Shibasaki,
M. Org. Lett. 2005, 7, 5339. (e) Matsunaga, S.; Yoshida, T.; Morimoto,
H.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777. (f)
Matsunaga, S.; Kumagai, N.; Harada, S.; Shibasaki, M. J. Am. Chem.
Soc. 2003, 125, 4712. (g) Yoshikawa, N.; Suzuki, T.; Shibasaki, M.
J. Org. Chem. 2002, 67, 2556. (h) Trost, B. M.; Ito, H.; Silcoff, E.
J. Am. Chem. Soc. 2001, 123, 3367. (i) Yoshikawa, N.; Kumagai, N.;
Matsunaga, S.; Moll, G.; Ohshima, T.; Suzuki, T.; Shibasaki, M. J. Am.
Chem. Soc. 2001, 123, 2466.
(20) For examples of asymmetric conjugate addition reactions using
ProPhenol, see: (a) Zhao, D.; Mao, L.; Wang, Y.; Yang, D.; Zhang, Q.;
Wang, R. Org. Lett. 2010, 12, 1880. (b) Zhao, D.; Yuan, Y.; Chan,
A. S. C.; Wang, R. Chem.;Eur. J. 2009, 15, 2738. (c) Trost, B. M.;
Hisaindee, S. Org. Lett. 2006, 8, 6003. (d) Trost, B. M.; Hitce, J. S. J. Am.
€
Chem. Soc. 2009, 131, 4572. (e) Trost, B. M.; Muller, C. J. Am. Chem.
Soc. 2008, 130, 2438.
(21) Nair reported the racemic synthesis of 2a and related compounds
via the NHC-catalyzed conjugate umpolung of cinnamaldehydes in com-
bination with isatins: Nair, V.; Vellalath, S.; Poonoth, M.; Mohan, R.;
Suresh, E. Org. Lett. 2006, 8, 507. During preparation of this manuscript,
the enantioselective variant of this reaction appeared in the literature: Sun,
L.-H.; Shen, L.-T.; Ye, S. Chem. Commun. 2011, 47, 10136.
Org. Lett., Vol. 14, No. 10, 2012
2447