Chiral-Pool-Based Approach to the Core Structure of (+)-Hyperforin
[2] For synthetic aspects, see: a) I. P. Singh, J. Sidana, S. B. Bhar-
ate, W. J. Foley, Nat. Prod. Rep. 2010, 27, 393–416; b) J. T.
Njardarson, Tetrahedron 2011, 67, 7631–7666.
[3] (–)-Clusianone: a) V. Rodeschini, N. S. Simpkins, C. Wilson,
J. Org. Chem. 2007, 72, 4265–4267; (+)-clusianone: b) M. R.
Garnsey, D. Lim, J. M. Yost, D. M. Coltart, Org. Lett. 2010,
12, 5234–5237; (+)- and (–)-clusianone: c) M. R. Garnsey, J. A.
Matous, J. J. Kwiek, D. M. Coltart, Bioorg. Med. Chem. Lett.
2011, 21, 2406–2409.
[4] J. Qi, A. B. Beeler, Q. Zhang, J. A. Porco Jr., J. Am. Chem. Soc.
2010, 132, 13642–13644.
[5] a) Y. Shimizu, S.-L. Shi, H. Usuda, M. Kanai, M. Shibasaki,
Angew. Chem. 2010, 122, 1121; Angew. Chem. Int. Ed. 2010,
49, 1103–1106; b) Y. Shimizu, S.-L. Shi, H. Usuda, M. Kanai,
M. Shibasaki, Tetrahedron 2010, 66, 6569–6584.
[6] a) G. Mehta, M. K. Bera, Tetrahedron Lett. 2004, 45, 1113–
1116; b) H. Usuda, A. Kuramochi, M. Kanai, M. Shibasaki,
Org. Lett. 2004, 6, 4387–4390; c) M. Abe, A. Saito, M. Nak-
ada, Tetrahedron Lett. 2010, 51, 1298–1302.
Scheme 4. Synthesis of the functionalized [3,3,1] bicyclic core of
(+)-hyperforin (1). Bn = benzyl, Bu = butyl, Ph = phenyl, Ac =
acetyl, NMO = N-methylmorpholine N-oxide, DMP = Dess–Mar-
tin periodinane.
[7] a) P. Wieland, K. Miescher, Helv. Chim. Acta 1950, 33, 2215–
2228; b) P. Buchschacher, A. Fürst, J. Gutzwiller, Organic Syn-
theses, Wiley, New York, 1990, Collect. Vol. 7, pp. 368–372; c)
T. Bui, C. F. Barbas III, Tetrahedron Lett. 2000, 41, 6951–6954.
[8] For selected examples, see: a) T. Ling, A. X. Xiang, E. A. Theo-
dorakis, Angew. Chem. 1999, 111, 3277; Angew. Chem. Int. Ed.
1999, 38, 3089–3091; b) T. Ling, C. Chowdhury, B. A. Kramer,
B. G. Vong, M. A. Palladino, E. A. Theodorakis, J. Org. Chem.
2001, 66, 8843–8853; c) T. Ling, E. Poupon, E. J. Rueden, S. H.
Kim, E. A. Theodorakis, J. Am. Chem. Soc. 2002, 124, 12261–
12267; d) T. X. Nguyen, M. Dakanali, L. Trzoss, E. A. Theo-
dorakis, Org. Lett. 2011, 13, 3308–3311; e) T. Ling, J. Xu, R.
Smith, A. Ali, C. L. Cantrell, E. A. Theodorakis, Tetrahedron
2011, 67, 3023–3029.
[9] B. Bradshaw, G. Etxebarria-Jardí, J. Bonjoch, J. Am. Chem.
Soc. 2010, 132, 5966–5967.
[10] S. Hanessian, N. Boyer, G. J. Reddy, B. Deschênes-Simard, Org.
Lett. 2009, 11, 4640–4643.
[11] a) S. J. Danishefsky, J. J. Masters, W. B. Young, J. T. Link, L. B.
Snyder, T. V. Magee, D. K. Jung, R. C. A. Isaacs, W. G.
Bornmann, C. A. Alaimo, C. A. Coburn, M. J. Di Grandi, J.
Am. Chem. Soc. 1996, 118, 2843–2859; b) J. J. Masters, J. T.
Link, L. B. Snyder, W. B. Young, S. J. Danishefsky, Angew.
Chem. 1995, 107, 1886; Angew. Chem. Int. Ed. Engl. 1995, 34,
1723–1726.
Conclusions
In summary, a chiral-pool approach involving the use of
(–)-Wieland–Miescher ketone (7) as a readily accessible chi-
ral building block rendered a high-yielding preparation of
the functionalized [3,3,1] bicyclic core structure of (+)-hy-
perforin (1). Key synthetic maneuvers involved oxidative
rupture of decalin 12, enone reduction/Eschenmoser–
Claisen rearrangement to cast the C5 quaternary center, a
one-pot alkyne hydrostannation/dihydroxylation to circum-
vent the troublesome alkyne partial reduction, and an ef-
ficient intramolecular aldol cyclization. Further efforts and
full account of our journey towards (+)-hyperforin (1) will
be reported in due course.
Supporting Information (see footnote on the first page of this arti-
cle): General information for the Experimental Section, experimen-
tal procedures and compound characterization, and 1H and 13C
NMR spectra for all compounds.
[12] P. Ciceri, F. W. J. Demnitz, Tetrahedron Lett. 1997, 38, 389–
390.
[13] a) Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 1978, 43, 1011–
1013; b) R. C. Larock, T. R. Hightower, G. A. Kraus, P. Hahn,
D. Zheng, Tetrahedron Lett. 1995, 36, 2423–2426.
[14] a) G. Lutteke, R. AlHussainy, P. J. Wrigstedt, B. T. Buu Hue,
R. de Gelder, J. H. van Maarseveen, H. Hiemstra, Eur. J. Org.
Chem. 2008, 925–933; b) L. Palais, A. Alexakis, Chem. Eur. J.
2009, 15, 10473–10485.
[15] S. Pereira, M. Srebnik, Aldrichim. Acta 1993, 26, 17–29.
[16] a) W. S. Johnson, L. Werthemann, W. R. Bartlett, T. J. Brock-
som, T. Li, D. J. Faulkner, M. R. Petersen, J. Am. Chem. Soc.
1970, 92, 741–743; b) K. C. Nicolaou, H. Ding, J.-A. Richard,
D. Y.-K. Chen, J. Am. Chem. Soc. 2010, 132, 3815–3818.
[17] R. Pitteloud, M. Petrzilka, Helv. Chim. Acta 1979, 62, 1319–
1325.
Acknowledgments
We thank Dr. Vengala Rao Ravu for early synthetic studies and
Ms. Doris Tan (ICES) for HRMS assistance. Financial support for
this work was provided by Agency for Science, Technology and
Research, Singapore.
[1] For reviews on polycyclic polyprenylated acylphloroglucinols
and phloroglucinols of natural origin along with their corre-
sponding biological activities, see: a) R. Ciochina, R. B. Gross-
man, Chem. Rev. 2006, 106, 3963–3986; b) I. P. Singh, S. B.
Bharate, Nat. Prod. Rep. 2006, 23, 558–591; for insight regard-
ing their biosynthesis, see: c) M. Dakanali, E. A. Theodorakis,
“Polyprenylated Phloroglucinols and Xanthones” in Biomime-
tic Organic Synthesis (Eds.: E. Poupon, B. Nay), Wiley-VCH,
Weinheim, 2011.
[18] A. E. Wick, D. Felix, K. Steen, A. Eschenmoser, Helv. Chim.
Acta 1964, 47, 2425–2429.
[19] H. X. Zhang, F. Guilbé, G. Balavoine, J. Org. Chem. 1990, 55,
1857–1867.
Received: November 11, 2011
Published Online: December 15, 2011
Eur. J. Org. Chem. 2012, 484–487
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
487