J IRAN CHEM SOC
3. B.S. Holla, M. Mahalinga, M.S. Karthikeyan, P.M. Akberali,
N.S., Shetty. Bioorg. Med. Chem. 14, 2040 (2006)
4. J.H. Chern, K.S. Shia, T.A. Hsu, C.L. Tai, C.C. Lee, Y.C. Lee,
C.S. Chang, S.N. Tseng, S.R. Shih, Bioorg. Med. Chem. Lett. 14,
2519 (2004)
5. F. Rigueiroa, S. Teixeiraa, A.M. Salaheldinb, A.M.F. Oliveira-
Camposb, L.M. Rodriguesb, F. Peixotoc, M.M. Oliveira, Bio-
chim. Biophys. Acta 17, 1777 (2008)
addition takes place between 6-aminouracil (1) and alde-
hyde (2), and consequently water elimination produces the
intermediate (4). In the next step, nucleophilic attack of the
other 6-aminouracil molecule (1) to intermediate (4) leads
to the production of the intermediate (5). NH2 activation in
the intermediate (6) by SBA-15-SO3H helps in the elimina-
tion of ammonia which is a driving force for obtaining the
desired product (7).
6. K. Hirotao, Y. Kitade, S. Senda, J. Heterocycl. Chem. 22, 345
(1985)
7. K. Hirotao, J. Huang, H. Sajiki, Y. Maki, Heterocycles 24, 2293
(1986)
8. R. Niess, R.K.J. Robins, Heterocycl. Chem. 7, 243 (1970)
9. K. Hirota, H. Kitade, H. Sajiki, Y. Maki, Synthesis 1984, 589
(1984)
The stability and reusability of the catalyst
10. M. Gohain, D. Prajapati, B.J.Gogoi, J.S. Sandhu, Synlett 2004,
1179 (2004)
11. J.L. Bernier, A. Lefebvre, C. Lespognol, J. Navarro, A. Perio,
Eur. J. Med. Chem. 12, 341 (1977)
12. D. Prajapati, A.J. Thakur, Tetrahedron Lett. 46, 1433 (2005)
13. M.H. Mosslemin, M.R. Nateghi, Ultrason. Sonochem. 17, 162
(2010)
The reusability of the catalyst was investigated using
6-aminouracil and 4-nitrobenzaldehyde as model sub-
strates. After completion of the reaction, the decanted cata-
lyst was washed with dichloromethane and dried in an oven
at 60 °C for 2 h. Then it was subjected to another reac-
tion with identical substrates. As can be seen in Fig. 5, the
recovered catalyst can be used for at least 6 runs without
significant loss of its activity.
14. N. Azizi, A. Mobinkhaledi, A. KhajeAmiri, H. Ghafuri, Res.
Chem. Intermed. 38, 2271 (2012)
15. M. Dabiri, H. Arvin Nezhad, H.R. Khavasi, A. Bazgir, Tetrahe-
dron 63, 1770 (2007)
16. P.J. Collman, L. Zeng, I.J. Brauman, Inorg. Chem. 43, 2672
(2004)
17. D.Y. Zhao, Q.S. Hue, J.L. Feng, B.E. Chmelka, G.D. Stucky, J.
Conclusion
Am. Soc. Chem. 120, 6024 (1998)
18. P. Karandikar, K.C. Dhanya, S. Deshpande, A.J. Chandwadkar, S.
Sivasanker, M. Agashte, Catal. Commun. 5, 69 (2004)
19. S. Rostamizadeh, N. Shadjou, A. Fazelzadeh, Curr. Nanosci. 8,
776 (2012)
In summary, a new highly acidic recyclable catalyst has
been designed by direct grafting of sulfonic groups on the
silica-based SBA-15 and used in the synthesis of some new
and known pyrido[2,3-d:6,5-d′]dipyrimidine derivatives.
Short reaction times, high yield of the products, and sol-
vent-free conditions are worthwhile advantages of the pre-
sent method.
20. S. Rostamizadeh, N. Shadjou, M. Hasanzadeh, J. Chin. Chem.
Soc. 59, 866 (2012)
21. S. Rostamizadeh, A. Amirahmadi, N. Shadjou, A.M. Amani, J.
Heterocycl. Chem. 49, 111 (2012)
22. S. Rostamizadeh, F. Abdollahi, N. Shadjou, A.M. Amani,
Monatsh. Chem. 144, 1191 (2013)
23. S. Rostamizadeh, M. Azad, N. Shadjou, M. Hasanzadeh, Catal.
Commun. 25, 83 (2012)
Acknowledgments The authors gratefully acknowledge the
Research Council of K. N. Toosi University of Technology for partial
financial support of this work.
24. S. Rostamizadeh, N. Shadjou, M. Azad, N. Jalali, Catal. Com-
mun. 26, 218 (2012)
25. S. Rostamizadeh, N. Shadjou, E. Isapoor, M. Hasanzadeh, J.
Nanosci. Nanotechnol. 13, 4925 (2013)
26. D. Zhao, J. Feng, Q. Hue, N. Melosh, G.H. Fredrickson, B.F.
Chmelka, G.D. Stucky, Science 279, 548 (1998)
27. C.C. Chen, S. Cheng, L.Y. Jang, Microporous Mesoporous Mater.
109, 258 (2008)
References
1. A. Kumar, I. Ahmad, B.S. Chhikara, R. Tiwari, D. Mandal, K.
Parang, Bioorg. Med. Chem. Lett. 21, 1342 (2011)
2. M. Bakavoli, G. Bagherzadeh, M. Vaseghifar, A. Shiri, M. Mehdi,
Pordel, M. Mashreghi, P. Pordeli, M. Araghi. Eur. J. Med. Chem.
45, 647 (2010)
28. M. Kidwai, K. Singhal, Can. J. Chem. 85, 400 (2007)
1 3