434
A. A. El-Shehawy et al. / Tetrahedron: Asymmetry 19 (2008) 425–434
Klej, A. W.; Gebbink, R. J. M. K.; van Koten, G. Top. Curr.
Chem. 2007, 217, 163–199.
K.; Tsunoda, Y.; Matsuo, A.; Watanabe, A. J. Polym. Sci.,
Part A: Polym. Chem. 2006, 44, 6659–6687.
11. For reviews on the synthesis and general discussion on the
advantages and disadvantages of chiral dendrimers, see: (a)
Tomalia, D. A.; Dvornic, P. R. Nature 1994, 372, 617–618;
(b) Moree, J. S. Acc. Chem. Res. 1997, 30, 402–413; (c)
Caminade, A.-M.; Laurent, R.; Chaudret, B.; Majoral, J. P.
Coord. Chem. Rev. 1998, 178–180, 793–821; (d) Bosman, A.
W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99, 1665–
1688; (e) Kriesel, J. W.; Tilley, T. D. Adv. Mater. 2001, 13,
1645–1648; (f) Astruc, D.; Chardac, F. Chem. Rev. 2001, 101,
2991–3023; (g) van Heerbeek, R.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Rev. 2002, 102,
3717–3756.
12. For representative examples of the use of chiral dendrimers in
asymmetric synthesis, see: (a) Bolm, C.; Derrien, N.; Seger, A.
Synlett 1996, 387–388; (b) Rheiner, P. B.; Sellner, H.;
Seebach, D. Helv. Chim. Acta 1997, 80, 2027–2032; (c)
Yamago, S.; Furukawa, M.; Azuma, A.; Yoshida, J. Tetra-
hedron Lett. 1998, 39, 3783–3786; (d) Hu, Q.-S.; Pugh, V.;
Sabat, M.; Pu, L. J. Org. Chem. 1999, 64, 7528–7536; (e)
Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H.
J. Am. Chem. Soc. 2000, 122, 8168–8179; (f) Arai, T.;
Sekiguti, T.; Iizuka, Y.; Takizawa, S.; Sakamoto, S.; Yam-
aguchi, K.; Sasai, H. Tetrahedron: Asymmetry 2002, 13,
2083–2087; (g) Deng, G.-J.; Fan, Q.-H.; Chen, X.-M.; Liu,
D.-S.; Chan, A. S. C. Chem. Commun. 2002, 1570–1571; (h)
Ribourdouille, Y.; Engel, G. D.; Richard-Plouet, M.; Gade,
L. H. Chem. Commun. 2003, 1228–1229; (i) Marubayashi, K.;
Takizawa, S.; Kawakusa, T.; Arai, T.; Sasai, H. Org. Lett.
2003, 5, 4409–4412; (j) Bellis, E.; Kokotos, G. J. Mol. Catal.
A: Chem. 2005, 241, 166–174; (k) Laurent, R.; Caminade, A.-
M.; Majoral, J.-P. Tetrahedron Lett. 2005, 46, 6503–6506; (l)
Liu, W.; Cui, X.; Cun, L.; Zhu, J.; Deng, J. Tetrahedron:
Asymmetry 2005, 16, 2525–2530; (m) Liu, X.; Li, Y.; Wang,
G.; Chai, Z.; Wu, Y.; Zhao, G. Tetrahedron: Asymmetry
2006, 17, 750–755; (n) Wang, G.; Zheng, C.; Zhao, G.
Tetrahedron: Asymmetry 2006, 17, 2074–2081; (o) Wu, Y.;
Zhang, Y.; Yu, M.; Zhao, G.; Wang, S. Org. Lett. 2006, 8,
4417–4420; (p) Deng, G.-J.; Li, G.-R.; Zhu, L.-Y.; Zhou, H.-
F.; He, Y.-M.; Fan, Q.-H.; Shuai, Z.-G. J. Mol. Catal. A:
Chem. 2006, 244, 118–123; (q) Tang, W.-J.; Huang, Y.-Y.;
He, Y.-M.; Fan, Q.-H. Tetrahedron: Asymmetry 2006, 17,
16. (a) Hirao, A.; Hayashi, M. Macromolecules 1999, 32, 6450–
6460; (b) Hayashi, M.; Hirao, A. Macromol. Chem. Phys.
2001, 202, 1717–1726; (c) Hirao, A.; Haraguchi, N. Macro-
molecules 2002, 35, 7224–7231; (d) Hirao, A.; Hayashi, M.;
Haraguchi, N. Macromol. Symp. 2002, 182, 11–16; (e)
Sugiyama, K.; Sakai, S.; El-Shehawy, A.; Hirao, A. Macro-
mol. Symp. 2004, 217, 1–15; (f) El-Shehawy, A. A.; Yokoy-
ama, H.; Sugiyama, K.; Hirao, A. Macromolecules 2005, 38,
8285–8299.
17. El-Shehawy, A. A. Tetrahedron 2007, 63, 11754–11762.
ˇ
ˇ
´
18. (a) Vyskocˇil, S.; Jaracz, S.; Smrcˇina, M.; Stıcha, M.; Hanusˇ,
´ˇ
ˇ
´
V.; Polasek, M.; Kocovsky, P. J. Org. Chem. 1998, 63, 7727–
7737; (b) Huang, W.-S.; Hu, Q.-S.; Pu, L. J. Org. Chem. 1999,
64, 7940–7956.
19. Hayashi, M.; Loykulnant, S.; Hirao, A.; Nakahama, S.
Macromolecules 1998, 31, 2057–2063.
20. For the specific rotation values, see: (a) Kitamura, M.; Suga,
S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071–
´
6072; (b) Ramon, D. J.; Yus, M. Tetrahedron: Asymmetry
´
1997, 8, 2479–2496; (c) Sola, L.; Reddy, K. S.; Vidal-Ferran,
´
A.; Moyano, A.; Pericas, M. A.; Riera, A.; Alvarez-Larena,
A.; Piniella, J.-F. J. Org. Chem. 1998, 63, 7078–7082; (d)
´
Prieto, O.; Ramon, D. J.; Yus, M. Tetrahedron: Asymmetry
2000, 11, 1629–1644; (e) Yang, W. K.; Cho, B. T. Tetrahe-
dron: Asymmetry 2000, 11, 2947–2953; (f) Kang, S.-W.; Ko,
D.-H.; Kim, K. H.; Ha, D.-C. Org. Lett. 2003, 5, 4517–4519;
(g) Chen, Y.-J.; Lin, R.-X.; Chen, C. Tetrahedron: Asymmetry
2004, 15, 3561–3571; (h) Hatano, M.; Miyamoto, T.; Ishiha-
ra, K. J. Org. Chem. 2006, 71, 6474–6484.
21. For electronic effects, see: (a) Buschmann, H.; Scharf, H.-D.;
Hoffman, N.; Esser, P. Angew. Chem., Int. Ed. Engl. 1991, 30,
477–515; (b) Corvy, E. J.; Helal, C. J. Tetrahedron Lett. 1995,
36, 9153–9156; (c) Park, S.-B.; Murata, K.; Matsumoto, H.;
Nishiyama, H. Tetrahedron: Asymmetry 1995, 6, 2487–2494;
(d) Zhang, H.; Xue, F.; Mak, T. C. W.; Chan, K. S. J. Org.
Chem. 1996, 61, 8002–8003; (e) Yang, D.; Yip, Y. C.; Vhen,
J.; Cheung, K. K. J. Am. Chem. Soc. 1998, 120, 7659–7660; (f)
Yang, X.-W.; Sheng, J.-H.; Da, C.-S.; Wang, H.-S.; Su, W.;
Wang, R.; Chan, A. S. C. J. Org. Chem. 2000, 65, 295–296.
22. The maximum ee value obtained from the addition of Et2Zn
to benzaldehyde using (1R,2S)-ephedrine immobilized on
polystyrene as a chiral catalyst is 89% ee (yield = 83%; see
Refs. 5b,e,f), while the maximum value obtained in the same
reaction using (1R,2S)-ephedrine immobilized on silica gel
coated with chloromethylated polystyrene is 56% ee
(yield = 64%; see Ref. 5c).
´
536–543; (r) Gissibl, A.; Padie, C.; Hager, M.; Jaroschik, F.;
Rasappan, R.; Cuevas-Yanez, E.; Turrin, C.-O.; Caminade,
˜
A.-M.; Majoral, J.-P.; Reiser, O. Org. Lett. 2007, 9, 2895–
2898; (s) Wang, Z. J.; Deng, G. J.; Li, Y.; He, Y.-M.; Tang,
W.-J.; Fan, Q.-H. Org. Lett. 2007, 9, 1243–1246; (t) Routa-
boul, L.; Vincendeau, S.; Turrin, C.-O.; Caminade, A.-M.;
Majoral, J.-P.; Daran, J.-C.; Manoury, E. J. Organomet.
Chem. 2007, 692, 1064–1073.
23. The maximum ee value reported for the addition of Et2Zn to
benzaldehyde using
a chiral dendritic catalyst bearing
(1R,2S)-ephedrine moieties located at the periphery with
hydrocarbon backbones is 78% ee (yield = 61%; see Refs.
8b,c), while the maximum value obtained from the same
reaction using the same chiral dendrimer but with i-Pr2Zn is
86% ee (yield = 63%; see Ref. 8b).
13. (a) Itsuno, S.; Watanabe, K.; Ito, K.; El-Shehawy, A. A.;
Sarhan, A. A. Angew. Chem., Int. Ed. 1997, 36, 109–110; (b)
Itsuno, S.; Watanabe, K.; Matsumoto, T.; Kuroda, S.;
Yokoi, A.; El-Shehawy, A. J. Chem. Soc., Perkin Trans. 1
1999, 2011–2016; (c) El-Shehawy, A. A. Tetrahedron: Asym-
metry 2006, 17, 2617–2624.
14. (a) El-Shehawy, A. A.; Abdelaal, M. Y.; Watanabe, K.; Ito,
K.; Itsuno, S. Tetrahedron: Asymmetry 1997, 8, 1731–1734;
(b) Itsuno, S.; El-Shehawy, A. A.; Sarhan, A. A. React. Funct.
Polym. 1998, 37, 283–287; (c) Itsuno, S.; Watanabe, K.; El-
Shehawy, A. A. Adv. Synth. Catal. 2001, 343, 89–94; (d) El-
Shehawy, A. A. Tetrahedron 2007, 63, 5490–5500.
15. (a) For recent reviews, see: (a) Hirao, A.; Hayashi, M.;
Haraguchi, N. Macromol. Rapid Commun. 2000, 21, 1171–
1184; (b) Hirao, A.; Hayashi, M.; Loykulnant, S.; Sugiyama,
K.; Ryu, S. W.; Haraguchi, N.; Matsuo, A.; Higashihara, T.
Prog. Polym. Sci. 2005, 30, 111–182; (c) Hirao, A.; Sugiyama,
24. The maximum ee value obtained from the addition of Et2Zn
to benzaldehyde using a chiral dendrimer with chiral ephed-
rine moieties located at the periphery with carbosilane
backbones is 82% ee (yield = 80%; see Refs. 8e,f), while the
maximum value obtained from the same reaction using the
same chiral dendrimer with i-Pr2Zn is 86% ee (yield = 84%;
see Ref. 8f).
25. For the physical and spectral data, see also: (a) Noyori, R.;
Suga, S.; Kawai, K.; Okada, S.; Kitamura, M.; Oguni, N.;
Hayashi, M.; Kaneko, T.; Matsuda, Y. J. Organomet. Chem.
1990, 382, 19–37; (b) Qian, C.-T.; Gao, F.-F.; Sun, J.
Tetrahedron: Asymmetry 2000, 11, 1733–1740; (c) Almansa,
R.; Guijarro, D.; Yus, M. Arkivoc 2006, iv, 18–28.