2,3-butanedione, benzophenone, porphyrins, etc. Unfortu-
nately, the absorption of these compounds is usually in the
UV range (except porphyrins). Furthermore, the ISC prop-
erty is unpredictable for the derivatives of these compounds; e.
g. the ISC property will disappear with derivatization. It is
still a substantial challenge to design a heavy-atom-free
organic triplet photosensitizer showing the predeter-
mined ISC property.18,19
Inregards tothisaspect, the efficient ISC offullerene C60
is particularly interesting.17,20 However, C60 itself is not an
ideal triplet photosensitizer because its absorption in the
visible range is extremely weak. C60 does show an absorp-
tion band at ca. 700 nm. This weak, yet crucial absorption,
indicating the presence of a low-lying sinlget excited state,
guarantees intramolecular energy transfer (EnT) in C60-
organic chromophore dyads.21À28 C60-organic chromo-
phore dyads have been reported; however, to the best of
our knowledge, the C60 dyads have not been used for
sensitizing a photophysical process, such as the production
of singlet oxygen (1O2).29
Dyad-1À3 are used as efficient triplet photosensitizers for the
photooxidation of DHN, via sensitizing of singlet oxygen
(1O2).30 The performance of these dyads is much better than
the conventional 1O2 photosensitizers (see later section).
Light harvesting antenna styryl-Bodipys were usually
obtained in low yields via the Knoevenagel condensation
(usually <30%).27 Herein we developed an efficient pre-
paration protocol by using microwave irradiation and
high boiling point solvents. The intermediate B-4 was
obtained in 93% yield (Supporting Information (SI)).
Suzuki cross-coupling between B-4 and 4-formylbenze-
neboronic acid affords B-5. A Prato reaction between
B-5, C60, and N-methylglycine gave Dyad-1. A similar
method was used for the preparation of Dyad-2 and
Dyad-3 (Figure 1 and SI). The solubility of Dyad-3 is
poor in normal organic solvents, and only elemental
analysis can be performed.
The design rationale of Dyad-1À3 lies in the notion that
antenna B-8 shows strong absorption in the visible range.31
Its S1 state energy level (1.93 eV) is higher than the S1 state
of C60 (1.72 eV); thus intramolecular EnT from the Bodipy
to C60 unit will occur.27 With population of the S1 state of
C60, the triplet state of C60 will be populated via the
intrinsic ISC of C60. However, the T1 states of the dyads
Herein we devised visible light-harvesiting C60 dyads
(Dyad-1À3, Scheme 1 and Figure 1). Styryl-Bodipys were
used as the light harvesting antennas, and C60 units act
as the spin convertor. The dyads show strong absorption
of visible light and very long-lived triplet excited states.
(17) Nagl, S.; Baleizao, C.; Borisov, S. M.; Schaferling, M.; Berberan-
Santos, M. N.; Wolfbeis, O. S. Angew. Chem., Int. Ed. 2007, 46, 2317–
2319.
Scheme 1. Synthesis of the Styryl-Bodipy Dyad Dyad-1
(18) Wu, Y.; Zhen, Y.; Ma, Y.; Zheng, R.; Wang, Z.; Fu, H. J. Phys.
Chem. Lett. 2010, 1, 2499–2502.
(19) Turro, N. J.; Ramamurthy,V.; Scaiano, J. C. Principles of
Molecular Photochemistry: An Introduction; University Science Books:
Sausalito, CA, 2009.
(20) Kuciauskas, D.; Lin, S.; Seely, G. R.; Moore, A. L.; Moore,
T. A.; Gust, D. J. Phys. Chem. 1996, 100, 15926–15932.
ꢀ
(21) (a) Gonzalez-Rodrıguez, D.; Torres, T.; Guldi, D. M.; Rivera, J.;
´
Echegoyen, L. Org. Lett. 2002, 4, 335–338. (b) Yamazaki, T.; Murata,
Y.; Komatsu, K.; Furukawa, K.; Morita, M.; Maruyama, N.; Yamao,
T.; Fujita, S. Org. Lett. 2004, 6, 4865–4868.
(22) (a) Shibano, Y.; Umeyama, T.; Matano, Y.; Tkachenko, N. V.;
Lemmetyinen, H.; Imahori, H. Org. Lett. 2006, 8, 4425–4428. (b)
ꢀ
Gouloumis, A.; Escosura, A.; Vazquez, P.; Torres, T.; Kahnt, A.; Guldi,
D. M.; Neugebauer, H.; Winder, C.; Drees, M.; Sariciftci, N. S. Org.
Lett. 2006, 8, 5187–5190.
(23) Nakamura, Y.; Suzuki, M.; Imai, Y.; Nishimura, J. Org. Lett.
2004, 6, 2797–2797.
(24) Ikemoto, J.; Takimiya, K.; Aso, Y.; Otsubo, T.; Fujitsuka, M.;
Ito, O. Org. Lett. 2002, 4, 309–311.
(25) Baffreau, J.; Ordronneau, L.; Leroy-Lhez, S.; Hudhomme, P.
J. Org. Chem. 2008, 73, 6142–6147.
(26) (a) Ziessel, R.; Allen, B. D.; Rewinska, D. B.; Harriman, A.
Chem.;Eur. J. 2009, 15, 7382–7393. (b) Iehl, J.; Nierengarten, J.-F.;
Harriman, A.; Bura, T.; Ziessel, R. J. Am. Chem. Soc. 2012, 134, 988–
998.
(27) (a) Liu, J. Y.; El-Khouly, M. E.; Fukuzumi, S.; P. Ng, D. K.
Chem.;Asian J. 2011, 6, 174–179. (b) Loudet, A.; Burgess, K. Chem.
Rev. 2007, 107, 4891–4932. (c) Hofmann, C. C.; Lindner, S. M.; Ruppert,
M.; Hirsch, A.; Haque, S. A.; Thelakkat, M.; Kohler, J. J. Phys. Chem. B
2010, 114, 9148–9156.
(28) (a) Charvet, R.; Yamamoto, Y.; Sasaki, T.; Kim, J.; Kato, K.;
Takata, M.; Saeki, A.; Seki, S.; Aida, T. J. Am. Chem. Soc. 2012, 134,
2524–2527. (b) Amin, A. N.; El-Khouly, M. E.; Subbaiyan, N. K.;
Zandler, M. E.; Fukuzumi, S.; D’Souza, F. Chem. Commun. 2012, 48,
206–208.
do not necessarily localize on the C60 unit. The localization
of the T1 state is dependent on the energy level of the light-
harvesting antenna and the C60 unit. A “ping-pong” energy
transfer may occur;26a,32,33 that is, first the energy transfer
from the antenna to the C60 unit (can be also considered as
€
ꢀ
(31) Baruah, M.; Qin, W.; Flors, C.; Hofkens, J.; Vallee, R. A. L.;
(29) Chiang, L. Y.; Padmawar, P. A.; Rogers-Haley, J. E.; So, G.;
Canteenwala, T.; Thota, S.; Tan, L. S.; Pritzker, K.; Huang, Y. Y.;
Sharma, S. K.; Kurup, D. B.; Hamblin, M. R.; Wilson, B.; Urbas, A.
J. Mater. Chem. 2010, 20, 5280–5293.
Beljonne, D.; Auweraer, M. V.; Borggraeve, W. M. D.; Boens, N.
J. Phys. Chem. A 2006, 110, 5998–6009.
(32) Yarnell, J. E.; Deaton, J. C.; McCusker, C. E.; Castellano, F. N.
Inorg. Chem. 2011, 50, 7820–7830.
(33) Liu, Y.; Zhao, J. Chem. Commun. 2012, 48, 3751–3753.
(30) Takizawa, S.; Aboshi, R.; Murata, S. Photochem. Photobiol. Sci.
2011, 10, 895–903.
Org. Lett., Vol. 14, No. 10, 2012
2595