CCDC 826085 contains the supplementary crystallographic data
for this paper (The Cambridge Crystallographic Data Centre,
www.ccdc.cam.ac.uk/data_request/cif).
´
1 G. R. Zimmermann, J. Lehar and C. T. Keith, Drug Discovery Today,
2007, 12, 34.
2 W. H. Ang, A. Casini, G. Sava and P. J. Dyson, J. Organomet.
Chem., 2011, 696, 989.
3 D. Hamels, P. M. Dansette, E. A. Hillard, S. Top, A. Vessieres,
P. Herson, G. Jaouen and D. Mansuy, Angew. Chem., Int. Ed.,
2009, 48, 9124.
4 W. H. Ang, L. J. Parker, A. De Luca, L. Juillerat-Jeanneret,
C. J. Morton, M. Lo Bello, M. W. Parker and P. J. Dyson, Angew.
Chem., Int. Ed., 2009, 48, 3854.
Fig. 4 Live cell imaging with confocal fluorescence microscopy in
SW480 cells of 3c (left) and co-stained with ER-TrackerTM Red (right).
5 I. Ott, B. Kircher, C. P. Bagowski, D. H. W. Vlecken, E. B. Ott,
J. Will, K. Bensdorf, W. S. Sheldrick and R. Gust, Angew. Chem.,
Int. Ed., 2009, 48, 1160.
6 J. E. Debreczeni, A. N. Bullock, G. E. Atilla, D. S. Williams,
H. Bregman, S. Knapp and E. Meggers, Angew. Chem., Int. Ed.,
2006, 45, 1580.
7 R. J. Nijveldt, E. van Nood, D. E. van Hoorn, P. G. Boelens,
K. van Norren and P. A. van Leeuwen, Am. J. Clin. Nutr., 2001,
74, 418.
8 E. Middleton, Jr., C. Kandaswami and T. C. Theoharides, Pharmacol.
Rev., 2000, 52, 673.
9 M. Grazul and E. Budzisz, Coord. Chem. Rev., 2009, 253, 2588.
10 X. Chen, L.-J. Tang, Y.-N. Sun, P.-H. Qiu and G. Liang, J. Inorg.
Biochem., 2010, 104, 379.
11 J. Ochocki, M. Kasprzak, L. Checinska, A. Erxleben, E. Zyner,
L. Szmigiero, A. Garza-Ortiz and J. Reedijk, Dalton Trans., 2010,
39, 9711.
12 O. J. Bandele and N. Osheroff, Biochemistry, 2007, 46, 6097.
13 T. A. Geissman and D. K. Fukushima, J. Am. Chem. Soc., 1948,
70, 1686.
14 M. Bennett, A. J. Burke and W. I. O’Sullivan, Tetrahedron, 1996,
52, 7163.
15 C. X. Qin, X. Chen, R. A. Hughes, S. J. Williams and
O. L. Woodman, J. Med. Chem., 2008, 51, 1874.
16 W. Kandioller, C. G. Hartinger, A. A. Nazarov, J. Kasser,
R. John, M. A. Jakupec, V. B. Arion, P. J. Dyson and
B. K. Keppler, J. Organomet. Chem., 2009, 694, 922.
17 W. Kandioller, C. G. Hartinger, A. A. Nazarov, M. L. Kuznetsov,
R. O. John, C. Bartel, M. A. Jakupec, V. B. Arion and
B. K. Keppler, Organometallics, 2009, 28, 4249.
18 M.G. Mendoza-Ferri, C. G. Hartinger, R. E. Eichinger,
N. Stolyarova, K. Severin, M. A. Jakupec, A. A. Nazarov and
B. K. Keppler, Organometallics, 2008, 27, 2405.
19 R. E. Aird, J. Cummings, A. A. Ritchie, M. Muir, R. E. Morris,
H. Chen, P. J. Sadler and D. I. Jodrell, Br. J. Cancer, 2002, 86,
1652.
20 M. G. Mendoza-Ferri, C. G. Hartinger, A. A. Nazarov,
R. E. Eichinger, M. A. Jakupec, K. Severin and B. K. Keppler,
Organometallics, 2009, 28, 6260.
21 A. K. Larsen, A. E. Escargueil and A. Skladanowski, Pharmacol.
Ther., 2003, 99, 167.
22 F. Gao, H. Chao and L.-N. Ji, Chem. Biodiversity, 2008, 5, 1962.
23 S. K. Singh, S. Joshi, A. R. Singh, J. K. Saxena and D. S. Pandey,
Inorg. Chem., 2007, 46, 10869.
24 F. Beckford, D. Dourth, M. Shaloski, J. Didion, J. Thessing,
J. Woods, V. Crowell, N. Gerasimchuk, A. Gonzalez-Sarrias and
N. P. Seeram, J. Inorg. Biochem., 2011, 105, 1019.
25 Y. Y. Scaffidi-Domianello, A. A. Legin, M. A. Jakupec,
V. B. Arion, V. Y. Kukushkin, M. Galanski and B. K. Keppler,
Inorg. Chem., 2011, 50, 10673.
with the DNA model compound 50-GMP were studied by
1H NMR spectroscopy. Complexes 3a–d reacted quickly with
the N7 atom of 50-GMP (H8 shift from d = 8.1 to approxi-
mately 7.6 ppm). Notably, the flavone ligand remains attached
to the Ru centre to interact with topoisomerase IIa. However,
the simultaneous interaction of the compounds with DNA
and the protein is difficult to prove and will be subject of a
separate study.
The flavonoids and their RuII(Z6-p-cymene) complexes
are fluorescent, with an emission maximum at ca. 520 nm
(3c; lex = 458 nm). This intrinsic property was used to localise
3c in SW480 cells in co-staining experiments with fluorescence
confocal laser scanning microscopy (Fig. 4). 3c and the
endoplasmic reticulum (ER) marker ER-TrackerTM Red
(lex = 587 nm, lem = 615 nm) give largely overlapping
signals, and therefore we conclude that the ER is the primarily
targeted organelle. This observation is common for lipophilic
compounds,28 and the ER might act as a reservoir for the
cytotoxic species.
In conclusion, the RuII(arene)-flavonoid system offers access
to multi-targeted anticancer drugs consisting of a DNA binding
metal centre and a biologically active ligand system inhibiting
topoisomerase IIa. With the accumulation in the endoplasmic
reticulum as a reservoir for the anticancer active moiety and the
covalent binding to DNA accompanied by increased topo-
isomerase IIa inhibitory activity as compared to its ligand 2d
and the high in vitro antitumour activity, the RuII(Z6-p-cymene)
complex 3d is a promising development candidate for an
anticancer drug following a double-strike approach.
´
We thank the University of Vienna, the Austrian Science
Fund (FWF), the Johanna Mahlke geb. Obermann Founda-
tion, and COST D39 for financial support. We gratefully
acknowledge Alexander Roller for collecting the X-ray
diffraction data.
References
z Crystallographic details: 3bꢀCH3OH: C27H29ClO4Ru, Mr = 554.02,
%
0.12 ꢂ 0.05 ꢂ 0.01 mm, triclinic, P1, a = 7.8882(5) A, b = 11.9690(9) A,
c = 13.5794(11) A, a = 74.879(5)1, b = 73.366(4)1, g = 89.101(4)1,
26 B. M. Zeglis, V. Divilov and J. S. Lewis, J. Med. Chem., 2011, 54, 2391.
27 Y. N. V. Gopal, D. Jayaraju and A. K. Kondapi, Biochemistry,
1999, 38, 4382.
28 D. Marko, K.-H. Merz, C. Kunz, A. Muller, N. Tarasova and
¨
G. Eisenbrand, Biochem. Pharmacol., 2002, 63, 669.
V = 1183.49(15) A3, Z = 2, rcalcd = 1.555 mg mꢃ3, m = 0.807 mmꢃ1
,
Mo-Ka, l = 0.71073 A, T = 100(2)K, 2ymax = 27.501, 5420 measured
independent reflections, Rint = 0.0972, R1 = 0.0466, wR2 = 0.1020;
description of data collection and refinement see supporting information;
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 4839–4841 4841