Financial support from NSFC (No. 21172237, 21121062,
21032007), the Major Basic Research Development Program
of China (Grant No. 2010CB833300), and the Chinese Academy
of Sciences is gratefully acknowledged.
Notes and references
1 S. Nahm and S. M. Weinreb, Tetrahedron Lett., 1981, 22, 3815.
2 For reviews, see: (a) M. P. Sibi, Org. Prep. Proced. Int., 1993,
25, 15; (b) M. Mentzel and H. M. R. Hoffmann, J. Prakt. Chem.,
1997, 339, 517; (c) J. Singh, N. Satyamurthi and I. S. Aidhen,
J. Prakt. Chem., 2000, 342, 340; (d) S. Balasubramaniam and
I. S. Aidhen, Synthesis, 2008, 3707.
3 R. Shintani, T. Kimura and T. Hayashi, Chem. Commun., 2005,
3213.
4 S. M. Smith, M. Uteuliyev and J. M. Takacs, Chem. Commun.,
2011, 47, 7812.
5 G. M. Noonan, D. Newton, C. J. Cobley, A. Suarez, A. Pizzano
´
and M. L. Clarke, Adv. Synth. Catal., 2010, 352, 1047.
6 For reviews, see: (a) Handbook of Homogeneous Hydrogenation, ed.
J. G. de Vries and C. J. Elsevier, Wiley VCH, Weinheim, 2007;
(b) G. Shang, W. Li and X. Zhang, in Catalytic Asymmetric Synthesis,
ed. I. Ojima, Wiley, Hoboken, 3rd edn, 2010, pp. 343–436.
Fig. 1 (a) X-Ray structures of (R,S)-3a (left) and (S,S)-3c (right),
H atoms, BArFÀ anion, and 1,5-cyclooctadiene are omitted for clarity.
(b) Schematic model for enantioselection of (R,S)- and (S,S)-3.
7 For examples, see: (a) S.-M. Lu and C. Bolm, Angew. Chem., Int. Ed.,
2008, 47, 8920; (b) W. Lu, Y. Chen and X. Hou, Angew. Chem., Int. Ed.,
2008, 47, 10133; (c) S. M. Lu and C. Bolm, Chem.–Eur. J., 2008,
14, 7513; (d) F. T. Tian, D. M. Yao, Y. Y. Liu, F. Xie and W. B. Zhang,
Adv. Synth. Catal., 2010, 352, 1841; (e) D. Liu, W. J. Tang and
X. Zhang, Org. Lett., 2004, 6, 513; (f) J. G. Zhou, J. W. Ogle,
Y. B. Fan, V. Banphavichit, Y. Zhu and K. Burgess, Chem.–Eur. J.,
2007, 13, 7162; (g) S. Li, S. F. Zhu, C. M. Zhang, S. Song and
Q. L. Zhou, J. Am. Chem. Soc., 2008, 130, 8584; (h) S. Li, S. F. Zhu,
J. H. Xie, S. Song, C. M. Zhang and Q. L. Zhou, J. Am. Chem. Soc.,
2010, 132, 1172; (i) D. H. Woodmansee, M. A. Muller, M. Neuburger
and A. Pfaltz, Chem. Sci., 2010, 1, 72; (j) D. Rageot, D. H.
Woodmansee, B. Pugin and A. Pfaltz, Angew. Chem., Int. Ed., 2011,
50, 9598.
8 W.-J. Lu and X.-L. Hou, Adv. Synth. Catal., 2009, 351, 1224 and
the references therein.
9 Burgess reported an example of chiral NHC–Ir catalyzed AH of a
Weinreb amide derivative with a moderate ee value (46%), see ref. 7f.
10 For reviews, see: (a) S. J. Roseblade and A. Pfaltz, Acc. Chem.
Res., 2007, 40, 1402; (b) X. Cui and K. Burgess, Chem. Rev., 2005,
whereas the reaction with sterically somewhat more crowded
1r resulted in incomplete conversion (94%) and a slightly
declined ee value (90%, entry 18). Finally, the procedure can
be scaled up to 1.0 mmol of the substrate, with even a slightly
higher ee value being obtained in the case of 1a (entry 20 vs. 1).
The structures of catalyst precursors (R,S)-3a and (S,S)-3c
have been determined by single crystal X-ray diffraction
(Fig. 1a, see ESIw for details).15 Inspired by the elegant DFT
study reported recently by Andersson et al.16 on the mechanism of
Ir/P4N catalyzed hydrogenation of unfunctionalized olefins as well
as the structures of (R,S)-3a and (S,S)-3c (Fig. 1a), we tentatively
propose a schematic model to account for the stereoselection in the
(R,S)- or (S,S)-3 catalyzed hydrogenation of unsaturated amides 1,
a class of trisubstituted olefins. As shown in Fig. 1b, the bulky
oxazolyl substituent is forced to situate either above or below the
equatorial plane defined by N–Ir–P of the catalytic intermediates
{[(R,S)-3]Ir(H)2(H2)(1)}+ or {[(S,S)-3]Ir(H)2(H2)(1)}+, respectively,
as a result of the constraints of the rigid spiro ligand backbone. The
unsaturated amide is coordinated trans to the phosphorous moiety,
and oriented with the smallest substituent (H atom) pointing
towards the oxazoline fragment. The sense of enantioselection
predicted on the basis of this model can rationalize the
opposite asymmetric inductions in AH of 1a using (R,S)- or
(S,S)-3 catalysts (Table 2).
105, 3272; (c) K. Kallstrom, I. Munslow and P. G. Andersson,
¨
¨
Chem.–Eur. J., 2006, 12, 3194; (d) Y.-G. Zhou, Acc. Chem. Res.,
2007, 40, 1357; (e) D. H. Woodmansee and A. Pfaltz, Chem.
Commun., 2011, 47, 7912.
11 For reviews, see: (a) G. Helmchen and A. Pfaltz, Acc. Chem. Res.,
2000, 33, 336; (b) H. A. McManus and P. J. Guiry, Chem. Rev.,
2004, 104, 4151; (c) I. D. Kostas, Curr. Org. Synth., 2008, 5, 227.
12 The spirobackbone based chiral ligands in asymmetric catalysis, see:
(a) Privileged Chiral Ligands and Catalysts, ed. Q.-L. Zhou, Wiley-VCH,
Weinheim, 2011; (b) A. S. C. Chan, W. Hu, C.-C. Pai, C.-P. Lau,
Y. Jiang, A. Mi, M. Yan, J. Sun, R. Lou and J. Deng, J. Am. Chem.
Soc., 1997, 119, 9570; (c) J.-H. Xie and Q.-L. Zhou, Acc. Chem. Res.,
2008, 41, 581; (d) K. Ding, Z. Han and Z. Wang, Chem.–Asian J., 2009,
4, 32; (e) G. B. Bajracharya, M. A. Arai, P. S. Koranne, T. Suzuki,
S. Takizawa and H. Sasai, Bull. Chem. Soc. Jpn., 2009, 82, 285.
13 (a) Z. Han, Z. Wang, X. Zhang and K. Ding, Angew. Chem., Int.
Ed., 2009, 48, 5345; (b) Y. Zhang, Z. Han, F. Li, K. Ding and
A. Zhang, Chem. Commun., 2010, 46, 156; (c) X. Wang, Z. Han,
Z. Wang and K. Ding, Angew. Chem., Int. Ed., 2012, 51, 936.
14 W. S. Wadsworth, Organic Reactions, J. R. Wiley and Sons,
New York, 1977, vol. 25, pp. 73–253.
In summary, catalytic AH of a,b-unsaturated Weinreb amides
using chiral Ir catalysts 3 has provided an efficient and clean
route to enantio-enriched Weinreb amides. Full conversions and
excellent ee values (up to 97%) can be obtained under the
optimized conditions, and the sterically less bulky substituents
at the b-position seem to be more amenable to the present
catalytic protocol. Given the easy access to various unsaturated
Weinreb amide substrates, such a catalytic AH methodology
is expected to find broad applications in the preparation of
optically active Weinreb amides.
15 CCDC 822915 ((R,S)-3a) and CCDC 865426 ((S,S)-3c) contain the
supplementary crystallographic data for this paper.
16 T. L. Church, T. Rasmussen and P. G. Andersson, Organometallics,
2010, 29, 6769 and the references cited therein.
c
5174 Chem. Commun., 2012, 48, 5172–5174
This journal is The Royal Society of Chemistry 2012