Communication
[2] D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308–319.
[8] For selected examples, see: a) S.-G. Li, S. Z. Zard, Org. Lett. 2013, 15,
5898–5901; b) Z. Zhang, Z. Sheng, W. Yu, G. Wu, R. Zhang, W.-D. Chu, Y.
Zhang, J. Wang, Nat. Chem. 2017, 9, 970–976; c) L. Xu, H. Wang, C. Zheng,
G. Zhao, Adv. Synth. Catal. 2017, 359, 2942–2948; d) H.-B. Yang, X. Fan,
Y. Wei, M. Shi, Org. Chem. Front. 2015, 2, 1088–1093.
[3] a) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52,
8214–8264; Angew. Chem. 2013, 125, 8372; b) C. Ni, J. Hu, Chem. Soc.
Rev. 2016, 45, 5441–5454; c) G. Landelle, A. Panossian, F. R. Leroux, Curr.
Top. Med. Chem. 2014, 14, 941–951; d) G. Landelle, A. Panossian, S. Paze-
nok, J.-P. Vors, F. R. Leroux, Beilstein J. Org. Chem. 2013, 9, 2476–2536; e)
P. A. Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F. Paquin,
Chem. Rev. 2015, 115, 9073–9174; f) E. Merino, C. Nevado, Chem. Soc.
Rev. 2014, 43, 6598–6608; g) H. Egami, M. Sodeoka, Angew. Chem. Int.
Ed. 2014, 53, 8294–8308; Angew. Chem. 2014, 126, 8434; h) M.-C. Bel-
homme, T. Besset, T. Poisson, X. Pannecoucke, Chem. Eur. J. 2015, 21,
12836–12865; i) T. Besset, T. Poisson, X. Pannecoucke, Chem. Eur. J. 2014,
20, 16830–16845; j) T. Besset, P. Jubault, X. Pannecoucke, T. Poisson, Org.
Chem. Front. 2016, 3, 1004–1010.
[4] a) F. Toulgoat, S. Alazet, T. Billard, Eur. J. Org. Chem. 2014, 2415–2428; b)
X.-H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 2015, 115, 731–764; c) S.
Barata-Vallejo, S. Bonesi, A. Postigo, Org. Biomol. Chem. 2016, 14, 7150–
7182; d) M. Li, J. Guo, X.-S. Xue, J.-P. Cheng, Org. Lett. 2016, 18, 264–267.
[5] C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani, E. J. Lien, J. Med.
Chem. 1973, 16, 1207–1216.
[9] For selected examples, see: a) S. Guo, X. Zhang, P. Tang, Angew. Chem.
Int. Ed. 2015, 54, 4065–4069; Angew. Chem. 2015, 127, 4137; b) H. Wu,
Z. Xiao, J. Wu, Y. Guo, J.-C. Xiao, C. Liu, Q.-Y. Chen, Angew. Chem. Int. Ed.
2015, 54, 4070–4074; Angew. Chem. 2015, 127, 4142; c) H.-Y. Xiong, T.
Besset, D. Cahard, X. Pannecoucke, J. Org. Chem. 2015, 80, 4204–4212;
d) L. Candish, L. Pitzer, A. Gomez-Suarez, F. Glorius, Chem. Eur. J. 2016,
22, 4753–4756; e) M. Jiang, F. Zhu, H. Xiang, X. Xu, L. Deng, C. Yang, Org.
Biomol. Chem. 2015, 13, 6935–6939; f) Y. Huang, X. He, X. Lin, M. Rong,
Z. Weng, Org. Lett. 2014, 16, 3284–3287; g) J. Zheng, R. Cheng, J.-H. Lin,
D.-H. Yu, L. Ma, L. Jia, L. Zhang, L. Wang, J.-C. Xiao, S. H. Liang, Angew.
Chem. Int. Ed. 2017, 56, 3196–3200; Angew. Chem. 2017, 129, 3244.
[10] For selected examples, see: a) X. Shao, X. Wang, T. Yang, L. Lu, Q. Shen,
Angew. Chem. Int. Ed. 2013, 52, 3457–3460; Angew. Chem. 2013, 125,
3541; b) C. Xu, B. Ma, Q. Shen, Angew. Chem. Int. Ed. 2014, 53, 9316–
9320; Angew. Chem. 2014, 126, 9470; c) S. Alazet, L. Zimmer, T. Billard,
Chem. Eur. J. 2014, 20, 8589–8593; For selected examples of enantio-
selective transformations, see: d) T. Bootwicha, X. Liu, R. Pluta, I. Atodire-
sei, M. Rueping, Angew. Chem. Int. Ed. 2013, 52, 12856–12859; Angew.
Chem. 2013, 125, 13093; e) X. Wang, T. Yang, X. Cheng, Q. Shen, Angew.
Chem. Int. Ed. 2013, 52, 12860–12864; Angew. Chem. 2013, 125, 13098;
f) X.-L. Zhu, J.-H. Xu, D.-J. Cheng, L.-J. Zhao, X.-Y. Liu, B. Tan, Org. Lett.
2014, 16, 2192–2195; g) M. Rueping, X. Liu, T. Bootwicha, R. Pluta, C.
Merkens, Chem. Commun. 2014, 50, 2508–2511; h) K. Liao, F. Zhou, J.-S.
Yu, W.-M. Gao, J. Zhou, Chem. Commun. 2015, 51, 16255–16258; i) B.-L.
Zhao, D.-M. Du, Org. Lett. 2017, 19, 1036–1039.
[11] For selected examples, see: a) Y.-D. Yang, A. Azuma, E. Tokunaga, M.
Yamasaki, M. Shiro, N. Shibata, J. Am. Chem. Soc. 2013, 135, 8782–8785;
b) Q.-H. Deng, C. Rettenmeier, H. Wadepohl, L. H. Gade, Chem. Eur. J.
2014, 20, 93–97.
[12] For selected examples, see: a) X. Shao, C. Xu, L. Lu, Q. Shen, J. Org. Chem.
2015, 80, 3012–3021; b) E. V. Vinogradova, P. Müller, S. L. Buchwald,
Angew. Chem. Int. Ed. 2014, 53, 3125–3128; Angew. Chem. 2014, 126,
3189; c) H. Zhang, X. Leng, X. Wan, Q. Shen, Org. Chem. Front. 2017, 4,
1051–1057.
[13] For selected examples, see: a) H. Chachignon, E. V. Kondrashov, D. Ca-
hard, Adv. Synth. Catal. 2018, 360, 965–971; b) W. Wu, X. Zhang, F. Liang,
S. Cao, Org. Biomol. Chem. 2015, 13, 6992–6999.
[14] A. Haas, W. Hinsch, Chem. Ber. 1971, 104, 1855–1862.
[15] S. Alazet, E. Ismalaj, Q. Glenadel, D. Le Bars, T. Billard, Eur. J. Org. Chem.
2015, 2015, 4607–4610.
[6] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165–195.
[7] For selected examples, see: a) B. Exner, B. Bayarmagnai, F. Jia, L. J.
Goossen, Chem. Eur. J. 2015, 21, 17220–17223; b) M. Hu, J. Rong, W.
Miao, C. Ni, Y. Han, J. Hu, Org. Lett. 2014, 16, 2030–2033; c) F. Hu, X.-X.
Shao, D.-H. Zu, L. Lu, Q. Shen, Angew. Chem. Int. Ed. 2014, 53, 6105–6109;
Angew. Chem. 2014, 126, 6219; d) J.-B. Liu, X.-H. Xu, Z.-H. Chen, F.-L. Qing,
Angew. Chem. Int. Ed. 2015, 54, 897–900; Angew. Chem. 2015, 127, 911;
e) T. Yang, L. Lu, Q. Shen, Chem. Commun. 2015, 51, 5479–5481; f) K.-Y.
Ye, X. Zhang, L.-X. Dai, S.-L. You, J. Org. Chem. 2014, 79, 12106–12110; g)
Z. Huang, Y.-D. Yang, E. Tokunaga, N. Shibata, Org. Lett. 2015, 17, 1063–
1065; h) G. Danoun, B. Bayarmagnai, M. F. Gruenberg, L. J. Goossen,
Chem. Sci. 2014, 5, 1312–1316; i) K. Zhang, J.-B. Liu, F.-L. Qing, Chem.
Commun. 2014, 50, 14157–14160; j) L. Jiang, J. Qian, W. Yi, G. Lu, C. Cai,
W. Zhang, Angew. Chem. Int. Ed. 2015, 54, 14965–14969; Angew. Chem.
2015, 127, 15178; k) Y. Yang, L. Xu, S. Yu, X. Liu, Y. Zhang, D. A. Vicic,
Chem. Eur. J. 2016, 22, 858–863; l) L. D. Tran, I. Popov, O. Daugulis, J. Am.
Chem. Soc. 2012, 134, 18237–18240; m) C. Xu, Q. Shen, Org. Lett. 2014,
16, 2046–2049; n) C. Chen, X.-H. Xu, B. Yang, F.-L. Qing, Org. Lett. 2014,
16, 3372–3375; o) W. Yin, Z. Wang, Y. Huang, Adv. Synth. Catal. 2014, 356,
2998–3006; p) Q. Wang, F. Xie, X. Li, J. Org. Chem. 2015, 80, 8361–8366;
q) X.-G. Liu, Q. Li, H. Wang, Adv. Synth. Catal. 2017, 359, 1942–1946; r)
M. Bu, G. Lu, C. Cai, Org. Chem. Front. 2017, 4, 266–270; s) Q. Zhao, T.
Poisson, X. Pannecoucke, J. P. Bouillon, T. Besset, Org. Lett. 2017, 19,
5106–5109; t) Q. Lefebvre, E. Fava, P. Nikolaienko, M. Rueping, Chem.
Commun. 2014, 50, 6617–6619; u) M. Lübcke, W. Yuan, K. J. Szabó, Org.
Lett. 2017, 19, 4548–4551; v) L. Jarrige, A. Carboni, G. Dagousset, G. Levi-
tre, E. Magnier, G. Masson, Org. Lett. 2016, 18, 2906–2909; w) G. Dagous-
set, C. Simon, E. Anselmi, B. Tuccio, T. Billard, E. Magnier, Chem. Eur. J.
2017, 23, 4282–4286; x) X. Liu, R. An, X. Zhang, J. Luo, X. Zhao, Angew.
Chem. Int. Ed. 2016, 55, 5846–5850; Angew. Chem. 2016, 128, 5940; y) S.
Pan, Y. Huang, F.-L. Qing, Chem. Asian J. 2016, 11, 2854–2858; z) J. Zhang,
L. Wang, J.-H. Lin, J.-C. Xiao, S. H. Liang, Angew. Chem. Int. Ed. 2015, 54,
13236–13240; Angew. Chem. 2015, 127, 13434; aa) Y. Li, T. Koike, M. Akita,
Asian J. Org. Chem. 2017, 6, 445–448.
[16] L. Hu, M. Wu, H. Wan, J. Wang, G. Wang, H. Guo, S. Sun, New J. Chem.
2016, 40, 6550–6553.
[17] For a selection of reports dealing with the conversion of α-haloalde-
hydes into the corresponding esters via NHC catalysis, see: a) N. T. Reyn-
olds, J. Read de Alaniz, T. Rovis, J. Am. Chem. Soc. 2004, 126, 9518–9519;
b) J. Mahatthananchai, J. W. Bode, Chem. Sci. 2012, 3, 192–197.
Received: March 13, 2018
Eur. J. Org. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim