basic amidine functionality. Compound 18 nicely maintained the
enzymatic and cellular potency but the pKa increased by half a
unit compared to 8a-c. In line with the higher pKa, the efflux in
the cellular MDR1-MDCK assay increased. To counter-balance
this effect, and in order to avoid a second stereo center, we
introduced an additional fluorine back into the quaternary methyl
group resulting in a significantly lower pKa of 6.4 for compound
19. As a result, the efflux ratio was reduced to the desired level.
When a second fluorine was added to the quaternary methyl
group a significant drop in activity in the enzymatic and cellular
BACE assays was observed (20). While there was no compound
available for pKa measurements, the previously observed
incremental pKa reduction (Table 1) predicts a pKa of 20
significantly below 6.0. Possibly, this amidine was not
protonated enough for the interaction with the catalytic aspartates
of the enzyme. In contrast to the disappointing potency, the
permeation properties showed some improvement. Overall, the
introduction of three fluorines seemed optimal, we therefore
decided to explore another arrangement, concentrating all three
fluorines in one methyl of the geminal di-methyl group. Since
this design generates a new stereocenter both epimers were
explored. The (6S)-epimer 21a showed a significant drop in
enzymatic and cellular BACE-1 inhibition compared to 13, with
IC50s greater than 1 M in both assays. Its pKa of 7.3 was closer
to that of 13 rather than 19, and minimal efflux was observed in
the MDR1-MDCK assay. The higher pKa is noteworthy,
considering the missing fluorine in P1 (expected effect: 0.3
units). The same pKa and similarly low efflux was also observed
for the (6R)-epimer 21b. The enzymatic and cellular activities of
21b were in the same range as the other most potent examples of
the amino-1,4-oxazine BACE-1 inhibitors described herein.
Trifluoromethyl analogues of 21a/b lacking the second geminal
methyl group were also prepared but were stereochemically
unstable and were therefore not further pursued.
References and notes
1.
Vassar, R.; Kuhn, P. H.; Haass, C.; Kennedy, M. E.;
Rajendran, L.; Wong, P. C. J. Neurochem. 2014, 130, 4.
Hardy, J.; Selkoe, D. J. Science 2002, 297, 353.
Golde, T. E.; Estus, S.; Younkin, L. H.; Selkoe, D. J.;
Younkin, S. G. Science 1992, 255,728.
2.
3.
4.
5.
Vassar, R. Alzh. Res. & Ther. 2014, 6. 1.
Sperling, R. A.; Rentz, D. M.; Johnson, K. A.; Karlawish,
J.; Donohue, M.; Salmon, D. P.; Aisen, P.; Sci. Transl.
Med. 2014, 228FS13.
6.
Lerchner, A.; Machauer, R.; Betschart, C.; Veenstra, S.;
Rueeger, H.; McCarthy, C.; Tintelnot-Blomley, M.; Jaton,
A.-L.; Rabe, S.; Desrayaud, S.; Enz, A.; Staufenbiel, M.;
Paganetti, P.; Rondeau, J.-M.; Neumann, U. Bioorg. &
Med. Chem. Lett. 2010, 20, 603.
7.
8.
Machauer, R.; Veenstra, S.; Rondeau, J.-M.; Tintelnot-
Blomley, M.; Betschart, C.; Neumann, U.; Paganetti, P.
Bioorg. & Med. Chem. Lett. 2009, 19, 1361.
Rueeger, H.; Lueoend, R.; Rogel, O.; Rondeau, J. M.;
Mobitz, H.; Machauer, R.; Jacobson, L.; Staufenbiel, M.;
Desrayaud, S.; Neumann, U. J. Med. Chem. 2012, 55,
3364.
9.
Rueeger, H.; Lueoend, R.; Machauer, R.; Veenstra, S. J.;
Jacobson, L. H.; Staufenbiel, M.; Desrayaud, S.; Rondeau,
J.-M.; Möbitz, H.; Neumann, U. Bioorg. & Med. Chem.
Lett. 2013, 23, 5300.
10.
May, P. C.; Dean, R. A.; Lowe, S. L.; Martenyi, F.;
Sheehan, S. M.; Boggs, L. N.; Monk, S. A.; Mathes, B. M.;
Mergott, D. J.; Watson, B. M.; Stout, S. L.; Timm, D. E.;
Smith Labell, E.; Gonzales, C. R.; Nakano, M.; Jhee, S. S.;
Yen, M.; Ereshefsky, L.; Lindstrom, T. D.; Calligaro, D.
O.; Cocke, P. J.; Greg Hall, D.; Friedrich, S.; Citron, M.;
Audia, J. E. J. Neurosc. 2011, 31, 16507.
11.
May, P. C.; Willis, B. A.; Lowe, S. L.; Dean, R. A.; Monk,
S. A.; Cocke, P. J.; Audia, J. E.; Boggs, L. N.; Borders, A.
R.; Brier, R. A.; Calligaro, D. O.; Day, T. A.; Ereshefsky,
L.; Erickson, J. A.; Gevorkyan, H.; Gonzales, C. R.; James,
D. E.; Jhee, S. S.; Komjathy, S. F.; Li, L.; Lindstrom, T.
D.; Mathes, B. M.; Martenyi, F.; Sheehan, S. M.; Stout, S.
L.; Timm, D. E.; Vaught, G. M.; Watson, B. M.;
Winneroski, L. L.; Yang, Z.; Mergott, D. J. J. Neurosc.
2015, 35, 1199.
Eketjall, S.; Janson, J.; Bogstedt, A.; Eketjall, S.; Janson,
J.; Bogstedt, A.; Kaspersson, K.; Jeppsson, F.; Falting, J.;
Jeppsson, F.; Haeberlein, S. B.; Kugler, A. R.; Alexander,
R. C.; Cebers, G. J. Alzh. Dis. 2016, 50, 1109.
Rombouts, F. J.; Tresadern, G.; Delgado, O.; Martinez-
Lamenca, C.; Van Gool, M.; Garcia-Molina, A.; Alonso de
Diego, S. A.; Oehlrich, D.; Prokopcova, H.; Alonso, J. M.;
Austin, N.; Borghys, H.; Van Brandt, S.; Surkyn, M.; De
Cleyn, M.; Vos, A.; Alexander, R.; Macdonald, G.;
Moechars, D.; Gijsen, H.; Trabanco, A. A. J. Med. Chem.
2015, 58, 8216.
Overall the amino-1,4-oxazines proved to be a highly
interesting chemotype for BACE-1 inhibition. This scaffold lends
itself to fine-tuning of the pKa, enabling the optimization of brain
permeation, an essential pre-requisite for a potential CNS drug
that needs to be applied over a long treatment period. The
presented SAR suggests that the desired pKa window for highly
brain penetrant inhibitors is even more narrow between 6.5 and
7.5. Due to their good biochemical and cellular potency, good
permeation in the MDR1-MDCK assay and little P-gp efflux
examples 8b, 12b, 19 and 21b are particularly attractive chemical
starting points for further optimization. The optimization of the
P1 and P3 moieties of this inhibitor series and other aspects like
selectivity over other aspartyl proteases, metabolic stability, etc.
will be subject of future communications.
12.
13.
Acknowledgments
14.
15.
Stamford, A. W.; Scott, J. D.; Li, S. W.; Babu, S.; Tadesse,
D.; Hunter, R.; Wu, Y.; Misiaszek, J.; Cumming, J. N.;
Gilbert, E. J.; Huang, C.; McKittrick, B. A.; Hong, L.;
Guo, T.; Zhu, Z.; Strickland, C.; Orth, P.; Voigt, J. H.;
Kennedy, M. E.; Chen, X.; Kuvelkar, R.; Hodgson, R.;
Hyde, L. A.; Cox, K.; Favreau, L.; Parker, E. M.; Greenlee,
William J. ACS Med. Chem. Lett. 2012, 3, 897.
Cheng, Y.; Brown, J.; Judd, T. C.; Lopez, P.; Qian, W.;
Powers, T. S.; Chen, J. J.; Bartberger, M. D.; Chen, K.;
Dunn, R. T., 2nd; Epstein, O.; Fremeau, R. T., Jr.; Harried,
S.; Hickman, D.; Hitchcock, S. A.; Luo, Y.; Minatti, A. E.;
Patel, V. F.; Vargas, H. M.; Wahl, R. C.; Weiss, M. M.;
Wen, P. H.; White, R. D.; Whittington, D. A.; Zheng, X.
M.; Wood, S. ACS Med. Chem. Lett. 2015, 6, 210.
We thank Kerstin Barker, Markus Furegati, Constanze
Hartwieg, Michael Hediger, Sebastien Jacquier, Philipp
Koeninger, Julia Kohlstedt, Thomas Ruppen, Heiner Schütz, Urs
Stauss, Martin Vogt, Jiri Zadrobilek, Thomas Zimmermann for
synthesis support, Tanja Dittmar, Vera Trappe, Irena Brzak,
Ludovic Perrot, Ulrich Furrer for in vitro and in vivo studies,
Karin Beltz and Rita Ramos for compound formulation support,
Sylvie Lehmann and Emmanuelle Bourgier for X-ray support,
and Rene Hemmig for the preparation of refolded BACE1. We
are grateful to the machine and beamline groups at the Paul
Scherrer Institute, Villigen, Switzerland, for the X-ray data
collection of the BACE1 complex with compound 4.