Table 4 Enantioselective synthesis of substituted pyrans using 1 and 4a
2 For reviews, see: (a) I. Larrosa, P. Romea and F. Urpi, Tetrahedron,
2008, 64, 2683; (b) P. A. Clarke and S. Santos, Eur. J. Org. Chem.,
2006, 2045.
3 For reviews, see: (a) F. Giacalone, M. Gruttadauria, P. Agrigento
and R. Noto, Chem. Soc. Rev, DOI: 10.1039/c1cs15206h;
(b) A. Moyano and R. Rios, Chem. Rev., 2011, 111, 4703;
(c) M. Nielsen, D. Worgull, T. Zweifel, B. Gschwend,
S. Bertelsen and K. A. Jørgensen, Chem. Commun., 2011,
47, 632; (d) D. R. Lopez, D. Sadaba, I. Delso, R. P. Herrera,
T. Tejero and P. Merino, Tetrahedron: Asymmetry, 2010, 21, 2561;
(e) S. Bertelsen and K. A. Jørgensen, Chem. Soc. Rev., 2009,
38, 2178; (f) P. Melchiorre, M. Marigo, A. Carlone and
G. Bartoli, Angew. Chem., Int. Ed., 2008, 47, 6138; (g) B. List,
Chem. Rev., 2007, 107, 5413; (h) P. I. Dalko and L. Moisan,
Angew. Chem., Int. Ed., 2004, 43, 5138.
4 For selected examples on organocatalytic stereoselective formation
of pyran rings, see: (a) X. Wang, T. Fang and X. Tong, Angew.
Chem., Int. Ed., 2011, 50, 5361; (b) H. Uehara, R. Imashiro,
G. H. Torres and C. F. Barbas III, Proc. Natl. Acad. Sci. U. S. A.,
2010, 107, 20672; (c) S. Dong, X. Liu, X. Chen, F. Mei, Y. Zhang,
B. Gao, L. Lin and X. Feng, J. Am. Chem. Soc., 2010, 132, 10650;
(d) J. Kaeobamrung, J. Mahatthananchai, P. Zheng and J. W.
Bode, J. Am. Chem. Soc., 2010, 132, 8810; (e) H. Gotoh,
D. Okamura, H. Ishikawa and Y. Hayashi, Org. Lett., 2009, 11,
4056; (f) D. Hazelard, H. Ishikawa, D. Hashizume, H. Koshino
and Y. Hayashi, Org. Lett., 2008, 10, 1445; (g) T. Tozawa,
H. Nagao, Y. Yamane and T. Mukaiyama, Chem.–Asian J.,
2007, 2, 123; (h) K. Juhl and K. A. Jørgensen, Angew. Chem.,
Int. Ed., 2003, 42, 1498; (i) Y. Huang, A. K. Unni, A. N. Thadani
and V. H. Rawal, Nature, 2003, 424, 146.
Entry R1 Ar2
t/days drb
Yield of 5c (%) eed (%)
1
2
3
4
5
Et 4-CNC6H4 2.5 1 : 1.3 75 (5a)
90, 87
89, 83
88, 87
55, 95
61, 87
Et 4-BrC6H4 2.5 1 : 1.6 87 (5b)
Et 4-NO2C6H4 3.0
Me 4-BrC6H4 1.5
Me 4-CNC6H4 1.5
1 : 1.6 84 (5c)
1 : 3.0 81 (5d)
1 : 3.0 79 (5e)
a
1 (0.25 mmol), 4 (0.5 mmol), VI (20 mol%) and 2-FC6H4CO2H
b
(40 mol%) were used in 0.25 mL CH2Cl2. Determined by 1H NMR
analysis of the crude reaction mixture.8 c Isolated yields of the mixture
d
of isomers. Determined by HPLC analysis.
In fact, higher loading of 2-fluorobenzoic acid (40 mol%) led
to slight increase in ee for both the diastereomers (90%, 87%)
and yield (75%) in shorter time, but reducing the catalyst
loading led to considerable loss of selectivity and yield (entries 9
and 10).
Having suitable conditions, the scope of the enantioselective
synthesis of pyran derivatives using aldehydes (4a,b) and trans-2-
aroyl-3-arylacrylonitriles (1a–c) was further demonstrated and is
given in Table 4. Both butyraldehyde (4a) and propionaldehyde
(4b) were successfully employed with the differently aryl-substituted
1 thus affording desired products 5a–e in high chemical yields
(up to 87%) and enantiomeric excess (up to 95% ee). Although
the products 5a–c generated from 4a were afforded with poor
diastereomeric ratios, the enantioselectivities of both isomers were
comparably good (entries 1–3). But in the case of 4b, the products
5d and 5e were obtained in better diastereomeric ratios and
high enantioselectivities (95%, 87%) only for major isomers
(entries 4 and 5). The absolute configuration of 5d10 was
determined by single crystal X-ray data analysis and those of
others were assigned by analogy.
5 For selected examples, (a) Ref. 4a; (b) C. D. Fusco, C. Tedesco and
A. Lattanzi, J. Org. Chem., 2011, 76, 676.
6 We believe that the reaction proceeds through Michael reaction
followed by enolization and cyclization. However hetero-
Diels–Alder reaction described by Juhl and Jørgensen [see ref. 4h]
cannot be excluded.
7 For reviews, see: (a) L. Jiang and Y.-C. Chen, Catal. Sci. Technol.,
2011, 1, 354; (b) M. Tommaso and H. Henk, Synthesis, 2010, 1229;
(c) L.-W. Xu, J. Luo and Y. Lu, Chem. Commun., 2009, 1807; for
selected recent examples; (d) L. Liu, D. Wu, X. Li, S. Wang, H. Li,
J. Li and W. Wang, Chem. Commun., 2012, 48, 1692;
(e) L.-L. Wang, L. Peng, J.-F. Bai, L.-N. Jia, X.-Y. Luo,
Q.-C. Huang, X.-Y. Xu and L.-X. Wang, Chem. Commun., 2011,
47, 5593; (f) P. Kwiatkowski, T. D. Beeson, J. C. Conrad and
D. W. C. MacMillan, J. Am. Chem. Soc., 2011, 133, 1738;
(g) Q. Cai, C. Zheng, J.-W. Zhang and S.-L. You, Angew. Chem.,
Int. Ed., 2011, 50, 8665, and ref. 11 cited therein; (h) L.-Y. Wu,
G. Bencivenni, M. Mancinelli, A. Mazzanti, G. Bartoli and
P. Melchiorre, Angew. Chem., Int. Ed., 2009, 48, 7196;
(i) G. Bencivenni, L.-Y. Wu, A. Mazzanti, B. Giannichi,
F. Pesciaioli, M.-P. Song, G. Bartoli and P. Melchiorre, Angew.
Chem., Int. Ed., 2009, 48, 7200.
8 The minor diastereomer of 3 or 5 which is observed in the crude
reaction mixture has the structure with syn stereochemistry resulting
from the Michael addition step.
9 We found that cyclopentanone and cycloheptanone were much less
reactive in our optimized reaction conditions. There was even no
product formation in the case of a-tetralone and 3-pentanone.
10 CCDC 865351 (3b) and 865350 (5d) contains supplementary
crystallographic data for this paper (ESIz).
In conclusion, we have demonstrated an efficient enantio-
selective cascade Michael addition–cyclisation reaction sequence
to generate highly functionalized pyrans of synthetic and bio-
logical importance. Cyclohexanone and aliphatic aldehydes were
successfully employed for the scope of the reaction with various
trans-trisubstituted alkenes (1a–n) to provide the corresponding
adducts in very high enantioselectivities (up to 96%) and very
good yields (up to 90%) having three contiguous chiral centers
one of which is quaternary (3a–n). The synthetic usefulness of
this method lies in the fact that electron-poor alkenes were
efficiently functionalized to access pyrans derivatives.
We thank the NSC of the Republic of China (NSC 99-2119-
M-003-004-MY2) and National Taiwan Normal University
(NTNU100-D-06) for financial support.
11 For reviews, see: (a) A. Mielgo and C. Palomo, Chem.–Asian J.,
2008, 3, 922; (b) C. Palomo and A. Mielgo, Angew. Chem., Int. Ed.,
2006, 45, 7876; for selected recent examples; (c) J. Deng, F. Wang,
W. Yan, J. Zhu, H. Jiang, W. Wang and J. Li, Chem. Commun.,
2012, 48, 148; (d) B.-C. Hong, N. S. Dange, C.-S. Hsu, J.-H. Liao
and G.-H. Lee, Org. Lett., 2011, 13, 1338; (e) V. Coeffard,
A. Desmarchelier, B. Morel, X. Moreau and C. Greck, Org. Lett.,
2011, 13, 5778; (f) K. L. Jensen, G. Dickmeiss, B. S. Donslund,
P. H. Poulsen and K. A. Jørgensen, Org. Lett., 2011, 13, 3678;
(g) H. Ishikawa, S. Sawano, Y. Yasui, Y. Shibata and Y. Hayashi,
Angew. Chem., Int. Ed., 2011, 50, 3774; (h) D. Enders, C. Wang,
M. Mukanova and A. Greb, Chem. Commun., 2010, 46, 2447;
(i) X. Companyo, A. Zea, A.-N. R. Alba, A. Mazzanti, A. Moyano
and R. Rios, Chem. Commun., 2010, 46, 6953; (j) J. Jiang, L. He,
S.-W. Luo, L.-F. Cun and L.-Z. Gong, Chem. Commun., 2007, 736.
Notes and references
1 For reviews, see: (a) K.-S. Yeung and I. Paterson, Chem. Rev.,
2005, 105, 4237; (b) E. J. Kang and E. Lee, Chem. Rev., 2005,
105, 4348; (c) J. E. Aho, P. M. Pihko and T. K. Rissa, Chem. Rev.,
2005, 105, 4406; (d) T. Nakata, Chem. Rev., 2005, 105, 4314;
(e) A. Goel and V. J. Ram, Tetrahedron, 2009, 65, 7865;
(f) N. Bai, K. He, A. Ibarra, A. Bily, M. Roller, X. Chen and
R. Ruhl, J. Nat. Prod., 2010, 73, 2.
c
5592 Chem. Commun., 2012, 48, 5590–5592
This journal is The Royal Society of Chemistry 2012