R. Kore, R. Srivastava / Tetrahedron Letters 53 (2012) 3245–3249
3249
13. Kutscheroff, M. Chem. Ber. 1881, 14, 1540–1542.
14. Ponomarev, D. A.; Shevchenko, S. M. J. Chem. Educ. 2007, 84, 1725–1726.
15. Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41,
4563–4565.
16. Nicolas, M.; Ruben, S. R.; Steven, P. N. J. Chem. Soc. 2009, 131, 448–449.
17. Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669–672.
18. Imi, K.; Imai, K.; Utimoto, K. Tetrahedron Lett. 1987, 28, 3127–3130.
19. Tsuchimoto, T.; Joya, T.; Shirakawa, E.; Kawakami, Y. Synlett 2000, 1777–1778.
20. Olivi, N.; Thomas, E.; Peyrat, J. F.; Alami, M.; Brion, J. D. Synlett 2004, 2175–
2179.
a wide range of alkynes (Table 4). Both aromatic and aliphatic al-
kynes could be converted to ketones under the given conditions.
Compared to aromatic terminal alkynes, aliphatic terminal alkynes
are less reactive. Internal alkynes are less reactive than terminal al-
kynes. To demonstrate the practicability of this synthesis protocol,
hydration reaction of phenyl acetylene was performed on a large
scale (100 mmol) to afford the isolated yield of 95% of acetophe-
none after 24 h of the reaction.
In conclusion, efficient, non-toxic, Noble metal free, and Brön-
sted acidic ionic liquid based economical route was developed
for the hydration reaction of alkynes. N-SO3H functionalized BAIL
([SO3Hmim][Cl]) was found to be more active than the N-R-SO3H
(R = alkyl/benzyl) functionalized BAILs. These reactions are easy
to perform and the purification protocol is simple. Apart from
the experimental simplicity, the advantage of this methodology
is to use mild and efficient BAILs for hydration reaction which
makes them interesting candidates for commercial use. Based on
the results, one can conclude that to establish a structure–activity
relationship, theoretical studies along with UV–visible study were
very helpful.
21. Allen, A. D.; Chiang, Y.; Kresge, A. J.; Tidwell, T. T. J. Org. Chem. 1982, 47, 775–
779.
22. Wong, W. L.; Ho, K. P.; Lee, L. Y. S.; Lam, K. M.; Zhou, Z. Y.; Chan, T. H.; Wong, K.
Y. ACS Catal. 2011, 1, 116–119.
23. Synthesis
of
BAILs-[Hmim][Cl],4
[SO3Hmim][Cl],5
[(SO3H)2im][Cl],5
[C3SO3Hmim][Cl]24 and [C3SO3Hmim][HSO4]24 were synthesized by
following the reported procedure.4,5,24 For the synthesis of [Benz-
SO3Hmim][Cl], first 1-benzyl-3-methylimidazolium chloride was prepared by
following the reported procedure.9 It was then sulfonated using stoichiometric
amount of chlorosulfonic acid in CH2Cl2 to obtain [Benz-SO3Hmim][Cl]
(Yield = 81%).
[Benz-SO3Hmim][Cl]: IR (KBr, t
, cmꢂ1) = 3415, 3150, 2960, 1655, 1455, 1255,
1060, 880, 775, 665. 1H NMR (400 MHz, D2O): d (ppm) 8.56 (s, 1H), 7.35–7.22
(m, 6H), 5.22 (s, 2H), 3.71 (s, 3H); 13C NMR (D2O): d (ppm) 135.99, 133.49,
129.22, 129.17, 128.47, 123.66, 122.15, 52.69, 35.56. Elemental analysis for
C11H13N2SO3Cl: Theoretical (%): C 45.75, H 4.51, N 9.71; Experimental (%): C
45.32, H 4.62, N 9.46.
24. Zhang, L.; Xian, M.; He, Y.; Li, L.; Yang, J.; Yu, S.; Xu, X. Bioresour. Technol. 2009,
100, 4368–4373.
Acknowledgments
25. Thomazeau, C.; Bourbigou, H. O.; Magna, L.; Luts, S.; Gilbert, B. J. Am. Chem. Soc.
2003, 125, 5264–5265.
26. Gu, Y.; Zhang, J.; Duan, Z.; Deng, Y. Adv. Synth. Catal. 2005, 347, 512–516.
27. Subbiah, S.; Venkatesan, S.; Ming-Chung, T.; Yen-Ho, C. Molecules 2009, 14,
3780–3813.
28. Fabio, R.; Douglas, G.; Gustavo, M. d. N.; Paulo, S. S. J. Phys. Chem. B 2012, 116,
1491–1498.
29. Richard, C. R.; Jayme, L. W.; Ashleigh, L. R.; Guillermo, M. J. Phys. Chem. B 2007,
111, 11619–11621.
Authors thank the Ministry of Human Resource and Develop-
ment, New Delhi and the Director, IIT Ropar for financial assis-
tance. We are grateful to Dr. T.J. Dhilip Kumar, Chemistry
Department, IIT Ropar for providing Gaussian 09 software for
DFT calculation. Authors acknowledge Dr. Snehlata Jaswal, IIT
Ropar, for proof reading the manuscript.
30. Andrea, M.; Chieu, D. T.; Silvia, H. D. P. L. Angew. Chem., Int. Ed. 2003, 42, 4364–
4366.
Supplementary data
31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,
T.; Montgomery J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.;
Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;
Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas,
O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision
A.1, Gaussian, Inc., Wallingford CT 2009.
Supplementary data (1H, 13C NMR spectra, and TGA of [Benz-
SO3Hmim][Cl]; optimized structures (Fig. 1 and related parameters
(Table 1) of BAILs calculated using B3LYP/6-31++ G(d,p); observed
parameters of BAILs calculated using B3LYP/6-31G (Tables 2))
associated with this article can be found, in the online version, at
References and notes
1. Welton, T. Chem. Rev. 1999, 99, 2071–2083.
2. Anderson, J. L.; Ding, R.; Ellern, A.; Armstrong, D. W. J. Am. Chem. Soc. 2005, 127,
593–604.
32. Hydration Reaction-In
a typical procedure, a solution of phenyl acetylene
(1.0 mmol) was mixed with water (3.0 mmol) and BAILs (1.0 mmol). The
reaction mixture was stirred for 10 h at 333 K. The reaction mixture was then
diluted with H2O and extracted with chloroform and dried over anhydrous
Na2SO4. The reaction mixture was analyzed using gas chromatography
3. Bourbigou, H. O.; Magna, L.; Morvan, D. Appl. Catal., A: Gen. 2010, 373, 1–56.
4. Pavlinac, J.; Zupan, M.; Laali, K. K.; Stavber, S. Tetrahedron 2009, 65, 5625–5662.
5. Zolfigol, M. A.; Khazaei, A.; Zare, A. R. M.; Zare, A.; Khakyzadeh, V. Appl. Catal. A
2011, 400, 70–81.
6. Kore, R.; Satpati, B.; Srivastava, R. Chem. Eur. J. 2011, 17, 14360–14365.
7. Kore, R.; Srivastava, R. Catal. Commun. 2012, 18, 11–15.
8. Kore, R.; Srivastava, R. Catal. Commun. 2011, 12, 1420–1424.
9. Kore, R.; Srivastava, R. J. Mol. Catal. A: Chem. 2011, 345, 117–126.
10. Cole, A. C.; Jensen, J. L.; Ntai, L.; Loan, K.; Tran, T.; Weaver, K. J.; Forbes, D. C.;
Davis, J. H., Jr. J. Am. Chem. Soc. 2002, 124, 5962–5963.
(Yonglin 6100; BP-5; 30 m ꢄ 0.25 mm ꢄ 0.25
identified by GC–MS (Shimadzu QP-5000; 30 m long, 0.25 mm i.d., with a
0.25- m-thick capillary column, DB-1) and authentic samples obtained from
lm). The products were
l
Aldrich.
Aqueous portion of the reaction mixture was evaporated to remove the water.
Residue was washed three-four times with diethyl ether to remove any organic
impurity. Finally, ionic liquid portion was dried under vacuum at 353 K for 4 h.
The recovered ionic liquid was used in the recycling experiments.
11. Harjani, J. R.; Nara, S. J.; Salunkhe, M. M. Tetrahedron Lett. 2002, 43, 1127–1130.
12. Trost, B. M. Science 1991, 254, 1471–1477.