Communication
ChemComm
J.-Q. Yu, Acc. Chem. Res., 2012, 45, 788; (d) S. R. Neufeldt and
M. S. Sanford, Acc. Chem. Res., 2012, 45, 936; (e) D. Lapointe,
T. Markiewicw, C. J. Whipp, A. Toderian and K. Fagnou, J. Org.
Chem., 2011, 76, 749; ( f ) H. M. L. Davies and D. Morton, Chem. Soc.
Rev., 2011, 40, 1857.
(b) E. Boess, C. Schmitz and M. Klussmann, J. Am. Chem. Soc., 2012,
134, 5317.
9 See: ref. 6c, 6m, 7f, 7g and h and (a) W. Han, P. Mayer and A. R. Ofial,
Adv. Synth. Catal., 2010, 352, 1667; (b) A. Wagner, W. Han, P. Mayer
and A. R. Ofial, Adv. Synth. Catal., 2013, 355, 3058; (c) W. Shirakawa,
N. Uchiyama and T. Hayashi, J. Org. Chem., 2011, 76, 25;
5 For reviews on oxidative a-C(sp3)–H functionalisation see:
(a) K. R. Campos, Chem. Soc. Rev., 2007, 36, 1069; (b) C.-J. Li, Acc.
˜
(d) H. Richter and O. G. Mancheno, Org. Lett., 2011, 13, 6066.
Chem. Res., 2009, 42, 335; (c) E. A. Mitchell, A. Peschiulli, N. Lefevre, 10 (a) S. Murata, K. Teramoto, M. Miura and M. Nomura, Bull. Chem.
L. Meerpoel and B. U. W. Maes, Chem. – Eur. J., 2012, 18, 10092;
(d) S.-Y. Zhang, F.-M. Zhang and Y.-Q. Tu, Chem. Soc. Rev., 2011,
40, 1937.
Soc. Jpn., 1993, 66, 1297; (b) M. O. Ratnikov, X. Xu and M. P. Doyle,
J. Am. Chem. Soc., 2013, 135, 9475.
11 Y. Nakano, G. P. Savage, S. Saubern, P. J. Scammells and A. Polyzos,
Aust. J. Chem., 2013, 66, 179.
6 For selected examples of sp3–sp coupling see: (a) S. I. Murahashi,
N. Komiya, H. Terai and T. Nakae, J. Am. Chem. Soc., 2003, 12 A. Noble and J. C. Anderson, Chem. Rev., 2013, 113, 2887.
125, 15312; (b) Z. Li and C.-J. Li, J. Am. Chem. Soc., 2004, 13 (a) E. Shirakawa, T. Yoneda, K. Moriyam, K. Ota, N. Uchiyama,
126, 11810; (c) W. Han and A. R. Ofial, Chem. Commun., 2009,
5024; (d) Z. Li, P. D. MacLeod and C.-J. Li, Tetrahedron: Asymmetry,
2006, 17, 590. For sp3–sp2 coupling see: (e) Z. Li and C.-J. Li, J. Am.
R. Nishikawa and T. Hayashi, Chem. Lett., 2011, 40, 1041; (b) T. Zeng,
G. Song, A. Moores and C.-J. Li, Synlett, 2010, 2002; (c) R. Hudson,
S. Ishikawa, C.-J. Li and A. Moores, Synlett, 2013, 1637.
´
Chem. Soc., 2005, 127, 6968; ( f ) O. Basle and C.-J. Li, Org. Lett., 2008, 14 S. G. Newman and K. F. Jensen, Green Chem., 2013, 15, 1456.
10, 3661; (g) M. Ghobrial, M. Schnu¨rch and M. D. Mihovilovic, 15 (a) M. O’Brien, I. R. Baxendale and S. V. Ley, Org. Lett., 2010,
J. Org. Chem., 2011, 76, 8781; (h) M. Ghobrial, K. Harhammer,
M. D. Mihovilovic and M. Schnu¨rch, Chem. Commun., 2010,
12, 1596; (b) A. Polyzos, M. O’Brien, T. P. Petersen, I. R. Baxendale
and S. V. Ley, Angew. Chem., Int. Ed., 2011, 50, 1190.
46, 8836. For sp3–sp3 coupling see: (i) Z. Li and C.-J. Li, J. Am. Chem. 16 For an account of the development of the Tube-in-Tube reactor see:
´
Soc., 2005, 127, 3672; ( j) O. Basle and C.-J. Li, Green Chem., 2007,
M. Brzozowski, M. O’Brien, S. V. Ley and A. Polyzos, Acc. Chem. Res.,
9, 1047; (k) Z. Li and C.-J. Li, Eur. J. Org. Chem., 2005, 3173; (l) A. Yu,
2014, submitted.
Z. Gu, D. Chen, W. He, P. Tan and J. Xiang, Catal. Commun., 2009, 17 For CO see: (a) P. Koos, U. Gross, A. Polyzos, M. O’Brien, I. R. Baxendale
11, 162. For C–X coupling see: (m) W. Han and A. R. Ofial, Chem.
and S. V. Ley, Org. Biomol. Chem., 2011, 9, 6903; (b) U. Gross, P. Koos,
M. O’Brien, A. Polyzos and S. V. Ley, Eur. J. Org. Chem., 2014, 6418. For
H2 see: (c) M. O’Brien, N. Taylor, A. Polyzos, I. R. Baxendale and S. V. Ley,
´
Commun., 2009, 6023; (n) O. Basle and C.-J. Li, Chem. Commun.,
2009, 4124; (o) K. Alagiri, P. Devadig and K. R. Prabhu, Tetrahedron
Lett., 2012, 53, 1456; (p) A. Modak, U. Dutta, R. Kancherla, S. Maity,
M. Bhadra, S. M. Mobin and D. Maiti, Org. Lett., 2014, 16, 2602.
7 For ruthenium see: (a) S.-I. Murahashi, T. Nakae, H. Terai and
N. Komiya, J. Am. Chem. Soc., 2008, 130, 11005. For copper see:
(b) Z. Li and C.-J. Li, Org. Lett., 2004, 6, 4997; (c) Z. Li, D. S. Bohle and
C.-J. Li, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 8928; (d) L. Zhao and
´
Chem. Sci., 2011, 2, 1250; (d) S. Newton, S. V. Ley, E. Casas Arce and
D. M. Grainger, Adv. Synth. Catal., 2012, 354, 1805; (e) S. Newton,
C. F. Carter, C. M. Pearson, L. de C. Alves, H. Lange, P. Thansandote
and S. V. Ley, Angew. Chem., Int. Ed., 2014, 53, 4915. For C2H4 see:
( f ) S. L. Bourne, P. Koos, M. O’Brien, B. Martin, B. Schenkel,
I. R. Baxendale and S. V. Ley, Synlett, 2011, 2643; (g) S. L. Bourne,
M. O’Brien, S. Kasinathan, P. Koos, P. Tolstoy, D. X. Hu, R. W. Bates,
B. Martin, B. Schenkel and S. V. Ley, ChemCatChem, 2013, 5, 159. For
NH3 see: (h) P. B. Cranwell, M. O’Brien, D. L. Browne, P. Koos, A. Polyzos,
´
C.-J. Li, Angew. Chem., Int. Ed., 2008, 47, 7075; (e) L. Zhao, O. Basle
and C.-J. Li, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 4106. For iron
see: ( f ) P. Liu, Z. Wang, J. Lin and X. Hu, Eur. J. Org. Chem., 2012,
1583; (g) K. Li, G. Tan, J. Huang, F. Song and J. You, Angew. Chem.,
Int. Ed., 2013, 52, 12942; (h) C. M. R. Volla and P. Vogel, Org. Lett.,
2009, 11, 1701. For vanadium see: (i) S. Singhal, S. L. Jain and
B. Sain, Chem. Commun., 2009, 2371; ( j) K. Alagiri, G. S. R. Kumara
and K. R. Prabhu, Chem. Commun., 2011, 47, 11787; (k) K. M. Jones,
P. Karier and M. Klussmann, ChemCatChem, 2012, 4, 51. For molybdenum
see: (l) K. Alagiri and K. R. Prabhu, Org. Biomol. Chem., 2012, 10, 835.
˜
´
M. Pena-Lopez and S. V. Ley, Org. Biomol. Chem., 2012, 10, 5774;
(i) D. L. Browne, M. O’Brien, P. Koos, P. B. Cranwell, A. Polyzos and
S. V. Ley, Synlett, 2012, 1402; ( j) J. C. Pastre, D. L. Browne, M. O’Brien
and S. V. Ley, Org. Process Res. Dev., 2013, 17, 1183. For O2 see:
(k) T. P. Petersen, A. Polyzos, M. O’Brien, T. Ulven, I. R. Baxendale and
S. V. Ley, ChemSusChem, 2012, 5, 274; (l) S. L. Bourne and S. V. Ley, Adv.
Synth. Catal., 2013, 355, 1905.
For gold see: (m) J. Xie, H. Li, Q. Xue, Y. Cheng and C. Zhu, Adv. Synth. 18 The use of stainless steel reactor coils is critical as significantly
Catal., 2012, 354, 1646; (n) Y. Zhang, S. Luo, B. Feng and C. Zhu, Chin. decreased yields were observed using standard PFA coils.
J. Chem., 2012, 30, 2741. For platinum see: (o) X.-Z. Shu, Y.-F. Yang, 19 (a) A. S.-K. Tsang and M. H. Todd, Tetrahedron, 2009, 50, 1199;
X.-F. Xia, F.-G. Ji, X.-Y. Liu and Y.-M. Liang, Org. Biomol. Chem., 2010,
8, 4077. For cobalt see: (p) N. Sakai, A. Mutsuro, R. Ikeda and
(b) A. S.-K. Tsang, P. Jensen, J. M. Hook, A. S. K. Hashmi and
M. H. Todd, Pure Appl. Chem., 2011, 83, 655.
T. Konakahara, Synlett, 2013, 1283; (q) C. Feng, J.-H. Su, Y. Yan, 20 No reaction was observed with 4-NO2C6H4-, 4-COMeC6H4- and
F. Guo and Z. Wang, Org. Biomol. Chem., 2013, 11, 6691. For zinc see:
(r) T. Sugiishi and H. Nakamura, J. Am. Chem. Soc., 2012, 134, 2504.
8 See ref. 6j–l and (a) E. Boess, D. Sureshkumar, A. Sud, C. Wirtz,
2-pyridyl N-aryl tetrahydroisoquinoline substrates.
21 For an investigation of mass transport performance and scalability
of the Tube-in-Tube reactor see L. Yang and K. F. Jensen, Org.
Process Res. Dev., 2013, 17, 927.
`
C. Fares and M. Klussmann, J. Am. Chem. Soc., 2011, 133, 8106;
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun., 2015, 51, 334--337 | 337