Journal of the American Chemical Society
Communication
MM and OP systems highlights the need for a better
understanding of how different shapes, geometries, and degrees
of freedom affect the macrocyclization energy landscape. To
accomplish this, the synthesis of a series of structurally unique
arylene-ethynylene polymers and an investigation of their
corresponding reactivities via alkyne metathesis are currently
being pursued.
ASSOCIATED CONTENT
■
S
* Supporting Information
Figure 4. Two constitutional isomers of OP-[3]mer.
Experimental procedures and NMR, GPC, and MALDI-MS
data. This material is available free of charge via the Internet at
The two polymers MM and OP contain constitutionally
isomeric monomer units, yet their product distributions after
metathesis are drastically different. This can be explained by
examining how the shape and geometry of the MM and OP
monomer units affect the macrocyclization energy landscape.
Both MM and OP monomer units have the same 60° angle
between alkynes (Figure 5), which expectedly favors formation
of the [3]mer. However, the two monomers have different
shapes because of the positions of the substituents on the
phenyl rings. Comparison of the pair of directionally reversed
monomers reveals the MM monomer to display a congruent
shape, whereas the OP monomer displays an incongruent
shape.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Science Foundation
(Grant CHE-1010680). The authors thank Dr. Dustin Gross
for helpful discussions relating to this project.
REFERENCES
■
(1) (a) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K.
M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898−952. (b) Lehn,
J.-M. Chem. Soc. Rev. 2007, 36, 151−160.
(2) (a) Gallant, A. J.; MacLachlan, M. J. Angew. Chem., Int. Ed. 2003,
42, 5307−5310. (b) Cacciapaglia, R.; Stefano, S. D.; Mandolini, L. J.
Am. Chem. Soc. 2005, 127, 13666−13671. (c) Au-Yeung, H. Y.;
Pantos, G. D.; Sanders, J. K. M. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
10466−10470. (d) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.;
Klock, C.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131,
̈
4570−4571. (e) Carnall, J. M. A.; Waudby, C. A.; Belenguer, A. M.;
Stuart, M. C. A.; Peyralans, J. J.-P.; Otto, S. Science 2010, 327, 1502−
1506. (f) Granzhan, A.; Schouwey, C.; Riis-Johannessen, T.; Scopelliti,
R.; Severin, K. J. Am. Chem. Soc. 2011, 133, 7106−7115. (g) Hasell, T.;
Chong, S. Y.; Jelfs, K. E.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc.
2012, 134, 588−598.
Figure 5. Structural comparisons of directionally reversed monomers
(tetradecyl chains removed for clarity).
Because of the congruency of the MM monomer, there is no
significant thermodynamic preference for one directionality
over the other. Therefore, a statistical ratio is observed for the
MM-[3]mer isomers. The three possible diarylacetylenes
formed during alkyne metathesis (as shown in MM-A2B in
Figure 3) lead to macrocycles with similar energies, since they
contain the same substitution pattern (meta,meta). The
directionality of the MM polymer is scrambled during alkyne
metathesis. In contrast, the incongruency of the OP system
predisposes4a,b the product distribution to the directional
macrocycles during equilibration. Hence, only the directionally
related ortho,para-substituted diarylacetylene leads to isolated
product, whereas the other possible diarylacetylenes (ortho,or-
tho and para,para) lead to macrocycles with higher energy due
to greater strain (OP-A2B in Figure 4).
In conclusion, directionally uniform macrocycles have been
synthesized via alkyne metathesis mediated depolymerization−
macrocyclization of an arylene-ethynylene polyester. The
results of this work exemplify the notion that an appropriately
designed monomer unit can display a greater tendency to form
a narrow macrocyclic product distribution. The profound
influence of the building block shape on the reactivities of the
(3) Zhang, W.; Moore, J. S. Angew. Chem., Int. Ed. 2006, 45, 4416−
4439.
(4) For selected examples of syntheses of directionally uniform
macrocycles via ester and imine exchange in which only “head−tail”
connections are possible, see: (a) Rowan, S. J.; Hamilton, D. G.;
Brady, P. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1997, 119, 2578−
2579. (b) Rowan, S. J.; Sanders, J. K. M. J. Org. Chem. 1998, 63, 1536−
1546. (c) Hartley, C. S.; Moore, J. S. J. Am. Chem. Soc. 2007, 129,
11682−11683. (d) Korich, A. L.; Hughes, T. S. Org. Lett. 2008, 10,
5405−5408.
(5) For selected examples of coordination-driven self-assembly of
directionally uniform supramolecular polygons utilizing unsymmetrical
and/or ambidentate ligands, see: (a) Beauchamp, D. A.; Loeb, S. J.
Chem. Commun. 2002, 2484−2485. (b) Chi, K.-W.; Addicott, C.; Arif,
A. M.; Stang, P. J. J. Am. Chem. Soc. 2004, 126, 16569−16574.
(c) Zhao, L.; Northrop, B. H.; Zheng, Y.-R.; Yang, H.-B.; Lee, H. J.;
Lee, Y. M.; Park, J. Y.; Chi, K.-W.; Stang, P. J. J. Org. Chem. 2008, 73,
6580−6586. (d) Zheng, Y.-R.; Northrop, B. H.; Yang, H.-B.; Zhao, L.;
Stang, P. J. J. Org. Chem. 2009, 74, 3554−3557.
(6) Zhang, W.; Kraft, S.; Moore, J. S. Chem. Commun. 2003, 832−
833.
(7) Zhang, W.; Moore, J. S. J. Am. Chem. Soc. 2004, 126, 12796.
(8) Moore, J. S.; Stupp, S. I. Macromolecules 1990, 23, 65−70.
9116
dx.doi.org/10.1021/ja303572k | J. Am. Chem. Soc. 2012, 134, 9114−9117