Communication
[1]
a) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48,
9792–9826; Angew. Chem. 2009, 121, 9976; b) D. Alberico, M. E. Scott, M.
Lautens, Chem. Rev. 2007, 107, 174–238; c) T. W. Lyons, M. S. Sanford,
Chem. Rev. 2010, 110, 1147–1169; d) R. Giri, B. Shi, K. M. Engle, N. Maugel,
J. Yu, Chem. Soc. Rev. 2009, 38, 3242–3272; e) L. McMurray, F. O′Hara,
M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885–1898; f) T. Yuan, C. Pi, C. You,
X. Cui, S. Du, T. Wang, Y. Wu, Chem. Commun. 2019, 55, 163–166; g) H.
Butenschön, Angew. Chem. Int. Ed. 2008, 47, 5287–5290; Angew. Chem.
2008, 120, 5367; h) K. E. O. Ylijoki, J. M. Stryker, Chem. Rev. 2013, 113,
2244–2266; i) M. Harmata, Chem. Commun. 2010, 46, 8886–8903; j) Z.
Wang, P. Xie, X. Xia, Chin. Chem. Lett. 2018, 29, 47–53; k) N. Lv, Z. Chen,
Y. Liu, Z. Liu, Y. Zhang, Org. Lett. 2017, 19, 2588–2591; l) W. Yu, W. Zhang,
Z. Liu, Y. Zhang, Chem. Commun. 2016, 52, 6837–6840; m) L. Kong, X.
Yang, X. Zhou, S. Yu, X. Li, Org. Chem. Front. 2016, 3, 813–816; n) L. Xu,
T. Li, L. Wang, X. Cui, J. Org. Chem. 2019, 84, 560–567; o) Z. Yang, L. Jie,
Z. Yao, Z. Yang, X. Cui, Adv. Synth. Catal. 2019, 361, 214–218; p) P. Zhang,
Y. GAO, L. Zhang, Z. Li, Y. Liu, G. Tang, Y. Zhao, Adv. Synth. Catal. 2016,
358, 138–142; q) L. Xu, S. Zhang, P. Li, Org. Chem. Front. 2015, 2, 459–
463.
Scheme 3. Proposed reaction mechanism.
Conclusions
[2]
a) R. Braslau, M. O. Anderson, F. Rivera, A. Jimenez, T. Haddad, J. R. Axon,
Tetrahedron 2002, 58, 5513–5523; b) L. Benati, G. Calestani, R. Leardini,
M. Minozzi, D. Nanni, P. Spagnolo, S. Strazzari, Org. Lett. 2003, 5, 1313–
1316; c) S. Esposti, D. Dondi, M. Fagnoni, A. Albini, Angew. Chem. Int. Ed.
2007, 46, 2531–2586; Angew. Chem. 2007, 119, 2583; d) S. Selvakumar,
R. Sakamoto, K. Maruoka, Chem. Eur. J. 2016, 22, 6552–6555; e) D. Ravelli,
M. Zema, M. Mella, M. Fagnoni, A. Albini, Org. Biomol. Chem. 2010, 8,
4158–4164; f) P. J. Fagan, P. J. Krusic, C. N. McEwen, J. PLazar, D. H. Park-
ert, N. Herron, E. Wasserman, Science 1993, 262, 404–407; g) M. D. Tzi-
rakis, M. Orfanopoulos, J. Am. Chem. Soc. 2009, 131, 4063–4069; h) D.
Ravelli, A. Albini, M. Fagnoni, Chem. Eur. J. 2011, 17, 572–579; i) I. Ryu,
A. Tani, T. Fukuyama, D. Ravelli, M. Fagnoni, A. Albini, Angew. Chem. Int.
Ed. 2011, 50, 1869–1872; Angew. Chem. 2011, 123, 1909; j) H. Yi, G.
Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev. 2017,
117, 9016–9085.
In summary, we have demonstrated an efficient ferrocene-initi-
ated an annulation of aryl aldehyde with alkynes as a new strat-
egy towards substituted indenones. In contrast to the known
processes, not only cheap and commercially available ferrocene
and tBuOOH were used as an initiator and an oxidant, but also
the prefunctionalization of the reacting partners is avoided in
this transformation. At the same time, a low loading of initiator
(0.5 mol-%) is enough to run the reaction. This protocol features
easy operation, high efficiency, environmental friendliness, and
tolerance of a broad range of functional groups. Due to the
modularity of the present method, the ferrocene-initiated acyl
radical addition to alkynes provides a novel strategy for atom/
step economical syntheses of useful pharmaceutical molecules.
[3]
S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 2009, 48, 9717–9720;
Angew. Chem. 2009, 121, 9897.
[4]
[5]
[6]
[7]
W. Liu, Y. Li, K. Liu, Z. Li, J. Am. Chem. Soc. 2011, 133, 10756–10759.
D. Leifert, C. G. Daniliuc, A. Studer, Org. Lett. 2013, 15, 6286–6289.
S. Wertz, D. Leifert, A. Studer, Org. Lett. 2013, 15, 928–931.
Experimental Section
a) E. M. Schustorovich, M. E. Dyatkina, Dokl. Akad. Nauk SSSR 1959, 128,
1234–1237; b) N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–
910; c) J. D. Dunitz, L. E. Orgel, Nature 1953, 171, 121; d) P. Seiler, J. D.
Dunitz, Acta Crystallogr., Sect. B 1979, 35, 1068–1074; e) M. Chen, B. Yang,
C. Chen, Angew. Chem. Int. Ed. 2015, 54, 15520–15524; f) Q. Zhang, X.
Cui, L. Zhang, S. Luo, H. Wang, Y. Wu, Angew. Chem. Int. Ed. 2015, 54,
5210–5213; Angew. Chem. 2015, 127, 5299; g) J. B. Thomson, Tetrahedron
Lett. 1959, 1, 26–27; h) D. H. R. Barton, V. N. Le Gloahec, H. Patin, F.
Launay, New J. Chem. 1998, 22, 559–563.
General Procedure for the Synthesis of Products 2: To a 20 mL
tube were added 1 (0.20 mmol), 2 (0.30 mmol), Fc (0.001 mmol),
tBuOOH (0.60 mmol) and followed by addition of CH3CN (2.0 mL).
The formed mixture was stirred in 120 °C oil bath for 30 h. The
reaction was monitored by TLC. The solution was then quenched
with H2O (10 mL), extracted with ethyl acetate (3 × 10 mL). The
combined organic phases were washed with saturated sodium
bicarbonate solution, dried with sodium sulfate, filtered, and
the solvents evaporated under vacuum. The crude product was pu-
rified by column chromatography on silica gel (eluent: petroleum
ether/ethyl acetate = 200:1 to 100:1) to afford the desired products
3.
[8]
[9]
a) C. Pi, Y. Li, X. Cui, H. Zhang, Y. Han, Y. Wu, Chem. Sci. 2013, 4, 2675–
2679; b) H. Zhang, X. Cui, X. Yao, H. Wang, J. Zhang, Y. Wu, Org. Lett.
2012, 14, 3012–3015.
a) C. F. Huebner, E. M. Donoghue, A. J. Plummer, D. A. Furness, J. Med.
Chem. 1966, 9, 830–832; b) J. L. Jeffrey, R. Sarpong, Org. Lett. 2009, 11,
5450–5453; c) J. Barbera, O. A. Rakitin, M. B. Ros, T. Torroba, Angew. Chem.
Int. Ed. 1998, 37, 296–299; Angew. Chem. 1998, 110, 308; d) K. Morinaka,
T. Ubukata, Y. Yokoyama, Org. Lett. 2009, 11, 3890–3893; e) G. M. An-
stead, S. R. Wilson, J. A. Katzenellenbogen, J. Med. Chem. 1989, 32, 2163–
2171; f) M. Froimowitz, K. Wu, A. Moussa, R. M. Haidar, J. Jurayj, C. Ge-
orge, E. L. Gardner, J. Med. Chem. 2000, 43, 4981–4992; g) K. Gao, N.
Yoshikai, Chem. Commun. 2012, 48, 4305–4307; h) Y. Kuninobu, T. Mat-
suki, K. Takai, Org. Lett. 2010, 12, 2948–2950.
a) B. Li, H. Wang, Q. Zhu, Z. Shi, Angew. Chem. Int. Ed. 2012, 51, 3948–
3952; Angew. Chem. 2012, 124, 4014; b) L. Yang, C. A. Correia, C. Li, Adv.
Synth. Catal. 2011, 353, 1269–1273; c) H. Tsukamoto, Y. Kondo, Org. Lett.
2007, 9, 4227–4230; d) T. Miura, M. Murakami, Org. Lett. 2005, 7, 3339–
3341; e) F. W. Patureau, T. Besset, N. Kuhl, F. Glorius, J. Am. Chem. Soc.
2011, 133, 2154; f) J. Jayakumar, K. Parthasarathy, C. Cheng, Angew.
Chem. Int. Ed. 2012, 51, 197–200; Angew. Chem. 2012, 124, 201;
g) L. Ackermann, A. V. Lygin, Org. Lett. 2012, 14, 764–767; h) T. Fukutani,
N. Umeda, K. Hirano, T. Satoh, M. Miura, Chem. Commun. 2009, 5141–
Acknowledgments
This work was supported by the NSF of China (Nos. 21572072),
Xiamen Southern Oceanographic Center (15PYY052SF01), 111
project (BC2018061) and Y. F. thanks the Postgraduates Innova-
tive Fund in Scientific Research of Huaqiao University and, the
financial support of Scientific Research Foundation of Xiamen
Huaxia University (HX201807), Outstanding Youth Scientific Re-
search Cultivation Plan in Fujian Province University (2018).
[10]
Keywords: Ferrocene · Cyclization · Radical reactions ·
C–H activation · Synthetic methods
Eur. J. Org. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim