Please do not adjust margins
ChemComm
Page 4 of 5
ARTICLE
Journal Name
yield (eq 1).23 This result is supportive of radical deoxgenation
of C–O bond. Subsequent C–B bond formation via radical
addition to B–B bond was proposed in a similar manner
suggested by Aggarwal (Scheme 1).23 Noteworthy is that the
cyclization involves conversion of a more stable tertiary alkyl
radical to a primary one, indicating that borylation of the latter
is kinetically more facile.
Nature, 2008, 456, 778.
5
(a) N. A. Owston and G. C. Fu, J. Am.DCOhIe: m10..1S0o39c./,D200C1C00,4717362G,
11908; (b) B. Saito and G. C. Fu, J. Am. Chem. Soc., 2007, 129,
9602.
A. S. Dudnik and G. C. Fu, J. Am. Chem. Soc., 2012, 134,
10693.
(a) C.-T. Yang, Z.-Q. Zhang, H. Tajuddin, C.-C. Wu, J. Liang, J.-
H. Liu, Y. Fu, M. Czyzewska, P. G. Steel, T. B. Marder and L.
Liu, Angew. Chem. Int. Ed., 2012, 51, 528; (b) H. Ito and K.
Kubota, Org. Lett., 2012, 14, 890.
S. K. Bose, K. Fucke, L. Liu, P. G. Steel and T. B. Marder,
Angew. Chem. Int. Ed., 2014, 53, 1799.
6
7
Me
Bpin
O
Me
Me
O
standard method
Me
OMe
O
(1)
8
9
O
O
43
44
51%
T. C. Atack, R. M. Lecker and S. P. Cook, J. Am. Chem. Soc.,
2014, 136, 9521.
10 T. C. Atack and S. P. Cook, J. Am. Chem. Soc., 2016, 138,
6139.
11 A. Joshi-Pangu, X. Ma, M. Diane, S. Iqbal, R. J. Kribs, R.
Huang, C.-Y. Wang and M. R. Biscoe, J. Org. Chem., 2012, 77,
6629.
12 C. Li, J. Wang, L. M. Barton, S. Yu, M. Tian, D. S. Peters, M.
Kumar, A. W. Yu, K. A. Johnson, A. K. Chatterjee, M. Yan and
P. S. Baran, Science, 2017, 356, eaam7355.
13 (a) A. Fawcett, J. Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers
and V. K. Aggarwal, Science, 2017, 357, 283; (b) D. Hu, L.
Wang and P. Li, Org. Lett., 2017, 19, 2770; (c) J.-J. Zhang, X.
Duan, Y. Wu, J. Yang and L. Guo, Chem. Sci., 2019, 10, 161.
14 (a) J. Hu, G. Wang, S. Li and Z. Shi, Angew. Chem. Int. Ed.,
2018, 57, 15227; (b) J. Wu, L. He, A. Noble and V. K.
Aggarwal, J. Am. Chem. Soc., 2018, 140, 10700; (c) F.
Sandfort, F. Strieth-Kalthoff, F. J. R. Klauck, M. J. James and F.
Glorius, Chem.-Eur. J., 2018, 24, 17210.
Conclusions
In summary, we have developed an efficient C–B bond
forming method via borylation of unactivated tertiary alkyl
methyl oxalates that was induced by blue light. The reaction
did not require external photoredox metal cata-lysts, and
displayed excellent compatibility with a wide range of linear
and cyclic tertiary alcohol-derived oxalates. We believe this
work should add a new entry to the preparation of tertiary
alkyl boronates that are complementary to the concurrent
methods. Our catalyst-free borylation conditions (without light)
are suitable for diborylation of a wide range of alkenes
affording diboronates. The use of imidazole modified
carbonthioate allowed borylation of a number of secondary
alcohols in moderate efficiencies.
15 For a metal catalyst-free photo-induced borylation of organo
iodides: Y. Cheng, C. Mück-Lichtenfeld and A. Studer, Angew.
Chem. Int. Ed., 2018, 57, 16832.
16 Y. Yang, H. Chen, J. L. Sessler and H. Gong, J. Am. Chem. Soc.,
2019, 141, 820.
17 F. W. Friese and A. Studer, Angew. Chem., Int. Ed., 2019, 58,
9561.
Conflicts of interest
There are no conflicts to declare.
18 J. A. Myhill, L. Zhang, G. J. Lovinger and J. P. Morken, Angew.
Chem., Int. Ed., 2018, 57, 12799.
19 For a detailed discussion based on UV, 11B NMR and ESI
studies, see Figure S1-S13 in the Supplementary Information.
20 D. Shi, L. Wang, C. Xia and C. Liu, Angew. Chem. Int. Ed.,
2018, 57, 10318.
Acknowledgments
Financial support was provided by the Chinese NSF (Nos.
21871173). We thank Dr. Deli Sun for initial studies of the
secondary alcohols, and Prof. Jiarong Chen (Center China
Normal University) for use of UV-NIR spectrometer.
21 (a) F. Alonso, Y. Moglie, L. Pastor-Pérez and A. Sepálveda-
Escribano, ChemCatChem, 2014, 6, 857; (b) C. Pubill-
Ulldemolins, M. Poyatos, C. Bo, and E. Fernández, Dalton
Trans., 2013, 42, 746; (c) N. Miralles, J. Cid, A. B. Cuenca, J. J.
Carbó and E. Fernández, Chem. Commun., 2015, 51, 1693; (d)
A. Farre, K. Soares, R. A. Briggs, A. Balanta, D. M. Benoit and
A. Bonet, Chem.-Eur. J., 2016, 22, 17552; (e) A. Bonet, C.
Sole, H. Gulyás and E. Fernández, Org. Biomol. Chem., 2012,
10, 6621; (f) D. J. Blair, D. Tanini, J. M. Bateman, H. K. Scott,
E. L. Myers and V. K. Aggarwal, Chem. Sci., 2017, 8, 2898; (g)
J. Liu, M. Nie, Q. Zhou, S. Gao, W. Jiang, L. W. Chung, W.
Tang and K. Ding, Chem. Sci., 2017, 8, 5161; (h) X.-X. Wang, L.
Li, T.-J. Gong, B. Xiao, X. Lu and Y. Fu, Org. Lett., 2019, 21,
4298.
Notes and references
1
(a) P. Andrés, G. Ballano, M. I. Calaza and C. Cativiela, Chem.
Soc. Rev., 2016, 45, 2291; (b) R. Smoum, A. Rubinstein, V. M.
Dembitsky and M. Srebnik, Chem. Rev., 2012, 112, 4156. (c)
E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S.A. Westcott, and T.B.
Marder. Chem. Rev., 2016, 116, 9091-9161.
2
3
(a) G. A. Molander and N. Ellis, Acc. Chem. Res., 2007, 40,
275; (b) M. Norio, Bull. Chem. Soc. Jpn., 2008, 81, 1535-1553;
(c) J. A. Milligan, J. P. Phelan, S. O. Badir and G. A. Molander,
Angew. Chem. Int. Ed., 2019, 58, 6152.
(a) D. Leonori and V. K. Aggarwal, Acc. Chem. Res., 2014, 47,
3174; (b) B. S. L. Collins, C. M. Wilson, E. L. Myers and V. K.
Aggarwal, Angew. Chem. Int. Ed., 2017, 56, 11700; (c) I. A. I.
Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy and J. F.
Hartwig, Chem. Rev., 2010, 110, 890.
22 (a) T. P. Blaisdell, T. C. Caya, L. Zhang, A. Sanz-Marco and J. P.
Morken, J. Am. Chem. Soc., 2014, 136, 9264; (b) L. Fang, L.
Yan, F. Haeffner and J. P. Morken, J. Am. Chem. Soc., 2016,
138, 2508.
23 See the Supporting Information for details.
24 For the discussion of the formation of B2Cat2-DMF complex,
see the SI. C. Kleeberg, A. G. Crawford, A. S. Batsanov, P.
Hodgkinson, D. C. Apperley, M. S. Cheung, Z. Lin, T. B. Marder, J.
Org. Chem., 2012, 77, 785-789.
4
(a) L. Zhang, G. J. Lovinger, E. K. Edelstein, A. A. Szymaniak,
M. P. Chierchia and J. P. Morken, Science, 2016, 351, 70; (b)
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins