Organic Letters
Letter
configurations and pharmacological activities of the optical isomers of
fluoxetine, a selective serotonin-uptake inhibitor. J. Med. Chem. 1988,
31, 1412−1417.
(4) (a) Norman, T. R.; Olver, J. S. Continuation treatment of major
depressive disorder: is there a case for duloxetine. Drug Des., Dev.
Ther. 2010, 4, 19−31. (b) Bymaster, F. P.; Beedle, E. E.; Findlay, J.;
Gallagher, P. T.; Krushinski, J. H.; Mitchell, S.; Robertson, D. W.;
Thompson, D. C.; Wallace, L.; Wong, D. T. Duloxetine (Cymbalta), a
dual inhibitor of serotonin and norepinephrine reuptake. Bioorg. Med.
Chem. Lett. 2003, 13, 4477−4480.
(5) Cashman, J. R.; Ghirmai, S. Inhibition of serotonin and
norepinephrine reuptake and inhibition of phosphodiesterase by
multi-target inhibitors as potential agents for depression. Bioorg. Med.
Chem. 2009, 17, 6890−6897.
(6) Wee, S.; Woolverton, W. L. Evaluation of the reinforcing effects
of atomoxetine in monkeys: comparison to methylphenidate and
desipramine. Drug Alcohol Depend. 2004, 75, 271−276.
ketone acceptors and afforded an aldol type adduct with great
structural diversity. Finally, resulting adduct V cleaved CO2 to
produce the desired β-hydroxy ester in an enantioenriched
form.
In conclusion, we developed a general and efficient method
for the direct construction of optically active β-hydroxy esters
under the potassium 2-nitrobenzoate-assisted Ni−oxazoline
complex catalysis. Various functional groups, including active
carbonyls, were well tolerated and enabled the rapid access to a
series of β-hydroxy esters with great structural diversity.
Importantly, this methodology can be conveniently employed
in the construction of enantioenriched phenylpropanoid,
phthalide, and 4-hydroxy-5-phenyldihydrofuran-2(3H)-one.
We anticipate that this promising strategy could be next
applied to the synthesis of versatile β-substituted esters in our
laboratory.
(7) (a) Hu, A.; Ngo, H. L.; Lin, W. Chiral, Porous, Hybrid Solids for
Highly Enantioselective Heterogeneous Asymmetric Hydrogenation
of β-Keto Esters. Angew. Chem., Int. Ed. 2003, 42, 6000−6003.
(b) Hu, A.; Ngo, H. L.; Lin, W. Remarkable 4,4′-Substituent Effects
on Binap: Highly Enantioselective Ru Catalysts for Asymmetric
Hydrogenation of β-Aryl Ketoesters and Their Immobilization in
Room-Temperature Ionic Liquids. Angew. Chem., Int. Ed. 2004, 43,
2501−2504. (c) Ma, B.; Miao, T.; Sun, Y.; He, Y.; Liu, J.; Feng, Y.;
Chen, H.; Fan, Q.-H. A New Class of Tunable Dendritic Diphosphine
Ligands: Synthesis and Applications in the Ru-Catalyzed Asymmetric
Hydrogenation of Functionalized Ketones. Chem. - Eur. J. 2014, 20,
9969−9978. (d) Jeulin, S.; Duprat de Paule, S.; Ratovelomanana-
Vidal, V.; Genet, J.-P.; Champion, N.; Dellis, P. Difluorphos, an
Electron-Poor Diphosphane: A Good Match Between Electronic and
Steric Features. Angew. Chem., Int. Ed. 2004, 43, 320−325. (e) Jeulin,
S.; de Paule, S. D.; Ratovelomanana-Vidal, V.; Genet, J.-P.;
Champion, N.; Dellis, P. Chiral biphenyl diphosphines for asymmetric
catalysis: Stereoelectronic design and industrial perspectives. Proc.
Natl. Acad. Sci. U. S. A. 2004, 101, 5799−5804. (f) Sun, X.; Li, W.;
Hou, G.; Zhou, L.; Zhang, X. Axial Chirality Control by 2,4-
Pentanediol for the Alternative Synthesis of C3*-TunePhos Chiral
Diphosphine Ligands and Their Applications in Highly Enantiose-
lective Ruthenium-Catalyzed Hydrogenation of β-Keto Esters. Adv.
Synth. Catal. 2009, 351, 2553−2557. (g) Wan, X.; Sun, Y.; Luo, Y.; Li,
D.; Zhang, Z. Synthesis of a Bulky and Electron-Rich Derivative of
SEGPhos and Its Application in Ru-Catalyzed Enantioselective
Hydrogenation of β-Ketoesters. J. Org. Chem. 2005, 70, 1070−1072.
(h) Qiu, L.; Kwong, F. Y.; Wu, J.; Lam, W. H.; Chan, S.; Yu, W.-Y.; Li,
Y.-M.; Guo, R.; Zhou, Z.; Chan, A. S. C. A New Class of Versatile
Chiral-Bridged Atropisomeric Diphosphine Ligands: Remarkably
Efficient Ligand Syntheses and Their Applications in Highly
Enantioselective Hydrogenation Reactions. J. Am. Chem. Soc. 2006,
128, 5955−5965. (i) Qiu, L.; Wu, J.; Chan, S.; Au-Yeung, T.; Ji, J.-X.;
Guo, R.; Pai, C.-C.; Zhou, Z.; Li, X.; Fan, Q.-H.; Chan, A. S. C.
Remarkably diastereoselective synthesis of a chiral biphenyl
diphosphine ligand and its application in asymmetric hydrogenation.
Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5815−5820. (j) Ireland, T.;
Grossheimann, G.; Wieser-Jeunesse, C.; Knochel, P. Ferrocenyl
Ligands with Two Phosphanyl Substituents in the α,ε positions for
the Transition Metal Catalyzed Asymmetric Hydrogenation of
Functionalized Double Bonds. Angew. Chem., Int. Ed. 1999, 38,
3212−3215. (k) Lotz, M.; Polborn, K.; Knochel, P. New Ferrocenyl
Ligands with Broad Applications in Asymmetric Catalysis. Angew.
Chem., Int. Ed. 2002, 41, 4708−4711. (l) Fukuzawa, S.-I.; Oki, H.;
Hosaka, M.; Sugasawa, J.; Kikuchi, S. ClickFerrophos: New Chiral
Ferrocenyl Phosphine Ligands Synthesized by Click Chemistry and
the Use of Their Metal Complexes as Catalysts for Asymmetric
Hydrogenation and Allylic Substitution. Org. Lett. 2007, 9, 5557−
5560.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, characterization, and NMR
spectra of new compounds (PDF)
Accession Codes
CCDC 1878656 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors gratefully acknowledge the National Natural
Science Foundation of China (21472141 and 21571144), the
Zhejiang Provincial Natural Science Foundation of China
(LY18B020011 and LQ19B020004), and the Foundation of
Zhejiang Educational Committee (Y201430852 and
Y201839490).
REFERENCES
■
(1) Andrushko, N.; Andrushko, V. Asymmetric Hydrogenation of C
O and CN Bonds in Stereoselective Synthesis. Stereoselective Synthesis
of Drugs and Natural Products; Wiley: Hoboken, NJ, 2013; pp 909−
959.
(2) Nakamura, S.; Takeuchi, T.; Hori, S.; Matsuzaki, M.; Umezawa,
H. Phenomycin, toxicity and distribution. J. Antibiot. 1971, 24, 197−
199.
(8) (a) Narasaka, K.; Soai, K.; Mukaiyama, T. The New Michael
Reaction. Chem. Lett. 1974, 3, 1223−1224. (b) Narasaka, K.; Soai, K.;
Aikawa, Y.; Mukaiyama, T. The Michael Reaction of Silyl Enol Ethers
(3) (a) Seigler, D.; Phenylpropanoids, S. Plant Secondary Metabolism;
Springer: New York, 1998; pp 106−129. (b) Robertson, D. W.;
Krushinski, J. H.; Fuller, R. W.; Leander, J. D. The absolute
E
Org. Lett. XXXX, XXX, XXX−XXX