A. L. Tsuhako et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3732–3738
3737
O
O
N
In summary, we describe a novel class of benzofuropyrimidi-
nones for PIM kinase inhibition. Using structure based design, we
were able to successfully optimize lead 3 from a PIM-1/-3 inhibitor
to a pan-PIM inhibitor, 6l, with cellular potency and good oral
exposure. In addition, through the SAR, we discovered that the
G-loop of PIM-1 was flexible, opening up the pocket for hydrogen
bonding opportunities with the DFG motif.
O
O
NH2
NH
NH
b
a
Cl
10a
Cl
O
Br
Br
17
16
c
Acknowledgments
We greatly appreciate the contributions to the biochemical and
pharmacokinetic data from members of Exelixis Genome Biochem-
istry, New Lead Discovery, Pharmacology and Compound Reposi-
tory. In addition, we greatly appreciate Jia Li for additional PIM-1
co-crystals not reported in this manuscript and Lai Man Adams
for technical expertise in crystallization.
O
N
O
NH R9
N
R8
Br
6a - 6m
Scheme 4. Reagents and conditions: (a) Chloroacetyl chloride, 40 °C, 30 min, 90%
yield; (b) 2 N NaOH, 40 °C, 20 min, 63% yield; (c) alkyl amine, EtOH, 80 °C.
References and notes
1. Cuypers, H. T.; Selten, G.; Quint, W.; Zijlstra, M.; Maandag, E. R.; Boelens, W.;
Van Wezenbeek, P.; Melief, C.; Berns, A. Cell 1984, 37, 141.
2. Qian, K. C.; Studts, J.; Wang, L.; Barringer, K.; Kronkaitis, A.; Peng, C.; Baptiste,
A.; LaFrance, R.; Mische, S.; Farmer, B. Acta Crystallogr., Sect. F 2005, 61, 96.
3. Fox, C. J.; Hammerman, P. S.; Cinalli, R. M.; Master, S. R.; Chodosh, L. A.;
Thompson, C. B. Gene Dev. 1841, 2003, 17.
100 mg/kg, and a favorable Rat PK profile with high bioavailability
and good absorption. Selectivity profiling pointed out Cdc7 as the
only other kinase that was significantly inhibited (IC50 activities
were >3600 nM for a panel of 30 kinases including c-Kit, Flt-3,
JAK2, PDGFR, and KDR). In addition, the cytochrome P450 profile
for 6l showed limited inhibition of the major isoforms: CYP3A4
4. MacDonald, A.; Campbell, D. G.; Toth, R.; McLauchlan, H.; Hastie, C. J.; Arthur, J.
S. C. BMC Cell Biol. 2006, 7, 1.
5. Nawijin, M. C.; Alendar, A.; Berns, A. Nat. Rev. 2011, 11, 23.
6. Santio, N. M.; Vahakoski, R. L.; Rainio, E.; Sandholm, J. A.; Virtanen, S. S.;
Prudhomme, M.; Anizon, F.; Moreau, P.; Koskinen, P. J. Mol. Cancer 2010, 9, 1.
7. Beharry, Z.; Mahajan, S.; Zemskova, M.; Lin, Y.; Tholanikunnel, B. G.; Xia, Z.;
Smith, C. D.; Kraft, A. S. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 528.
8. Shah, N.; Pang, B.; Yeoh, K.; Thorn, S.; Chen, C. S.; Lilly, M. B.; Salto-Tellez, M.
Eur. J. Cancer 2008, 44, 2144.
9. Haddach, M.;Michauz, J.; Schwaebe, M. K.; Pierre, F.; O’Brien, S. E.; Borsan, C.;
Tran, J.; Raffaele, N.; Ravula, S.; Drygin, D.; Siddiqui-Jain, A.; Darjania, L.;
Stansfield, R.; Proffitt, C.; Macalino, D.; Streiner, N.; Bliesath, J.; Omori, M.;
Whitten, J. P.; Anderes, K.; Rice, W. G.; Ryckman, D. M. Med. Chem. Lett. 2011,
Ahead of Print.
10. Nishiguchi, G. A.; Atallah, G.; Bellamacina, C.; Burger, M. T.; Ding, Y.; Feucht, P.
H.; Garcia, P. D.; Han, W.; Klivansky, L.; Lindvall, M. Bioorg. Med. Chem. Lett.
2011, 21, 6366.
11. Pierre, F.; Stefan, E.; Nedellec, A.; Chevrel, M.; Regan, C. F.; Siddiqui-Jain, A.;
Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S. E.; Anderes, K.;
Ryckman, D. M. Bioorg. Med. Chem. Lett. 2011, 21, 6687.
12. Tao, Z.; Hasvold, L. A.; Leverson, J. D.; Han, E. K.; Guan, R.; Johnson, E. F.; Stoll, V.
S.; Stewart, K. D.; Stamper, G.; Soni, N.; Bouska, J. J.; Luo, Y.; Sowin, T. J.; Lin, N.;
Giranda, V. S.; Rosenberg, S. H.; Penning, T. D. J. Med. Chem. 2009, 52, 6621.
13. Akue-Gedu, R.; Nauton, L.; Thery, V.; Bain, J.; Cohen, P.; Anizon, F.; Moreau, P.
Bioorg. Med. Chem. Lett. 2010, 18, 6865.
14. Lopez-Ramos, M.; Prudent, R.; Moucadel, V.; Sautel, C. F.; Barette, C.;
Lafanechere, L.; Mouawad, L.; Grierson, D.; Schmidt, F.; Florent, J.;
Filippakopoulos, P.; Bullock, A. N.; Knapp, S.; Reiser, J.; Cochet, C. FASEB J.
2010, 24, 3171.
(MDZ), 2C8, 2C9, 2C19, 2D6 IC50’s >20 lM; CYP1A2 IC50 = 5.1 lM.
In mechanistic cellular assays with HEL92.1.7 cells, 6l caused a
dose dependent inhibition of the phosphorylation of BAD at the
PIM kinase specific site S112. This inhibitory effect in cells is be-
lieved to be due to PIM activity since 6l is not biochemically active
against JAK2 or Flt-3 (IC50 >3600 nM).
The compounds in Table 1 were synthesized according to
Scheme 1 where an appropriately substituted hydroxybenzonitrile
(8) was alkylated with bromoacetamide under mildly basic condi-
tions at 75 °C to give the corresponding cyanophenoxy-acetamide
9.28 Heating of 9 under basic conditions induced cyclization to give
aminobenzofuran-carboxamide 10. Formation of the benzofuro-
pyrimidinone required cyclization under high temperatures with
2-chlorobenzaldehyde and a catalytic amount of acid, either concen-
trated HCl or copper(II) chloride. Withoutthe high temperatures, the
reaction stopped at the 2,3-dihydrobenzofuropyrimidinone stage.
Synthesis of the cyclopropyl analog 4p (Scheme 2) required Boc pro-
tection of the phenol, followed by Suzuki coupling of the bromide
with the corresponding cyclopropyl boronic acid to give 11. Boc
deprotection gave the corresponding phenol that was then used to
synthesize 4p and 7c.
15. Grey, R.; Pierce, A. C.; Bemis, G. W.; Jacobs, M. D.; Moody, C. S.; Jajoo, R.; Mohal,
N.; Green, J. Bioorg. Med. Chem. Lett. 2009, 19, 3019.
The compounds in Table 2 were synthesized according to
Scheme 3 where instead of cyclization with 2-chlorobenzaldehyde,
10a was cyclized with 2-chloro-4-nitrobenzaldehyde to give inter-
mediate 13. The nitro group was then reduced with sodium dithio-
nite or tin(II) chloride to give aniline 14, which was either acylated
with a variety of acid chlorides, or reductively alkylated with a
variety of aldehydes. The reverse amides in this table were made
by reacting methyl-3-chloro-4-formylbenzoate with 10a to give
the corresponding benzofuropyrimidinone 15. The methyl ester
was then saponified and the corresponding acid was activated with
HATU for couplings with amines.
The compounds in Table 3 were synthesized according Scheme 4
where intermediate 10a was reacted with chloroacetyl chloride to
give intermediate 16. Cyclization under basic conditions occurs rap-
idly to give chloromethyl benzofuropyrimidinone 17, which can
then be displaced with a variety of alkyl amines. The compounds
in Table 4 were also synthesized in an analogous manner where
the starting hydroxy-bromobenzonitrile was substituted with the
corresponding chloro, iodo or cyclopropyl hydroxybenzonitrile.
16. Sliman, F.; Blairvacq, M.; Durieu, E.; Meijer, L.; Rodrigo, J.; Desmaele, D. Bioorg.
Med. Chem. Lett. 2010, 20, 2801.
17. Qian, K.; Wang, L.; Cywin, C. L.; Farmer, B. T.; Hickey, E.; Homon, C.; Jakes, S.;
Kashem, M. A.; Lee, G.; Leonard, S.; Li, J.; Magboo, R.; Wang, M.; Pack, E.; Peng,
C.; Prokopowicz, A.; Welzel, M.; Wolak, J.; Morwick, T. J. Med. Chem. 1814, 2009,
52.
18. Tong, Y.; Syewart, K. D.; Thomas, S.; Przytulinska, M.; Johnson, E. F.; Klinghofer,
V.; Leverson, J.; McCall, O.; Soni, N. B.; Luo, Y.; Lin, N.; Sowin, T. J.; Giranda, V. L.;
Penning, T. D. Bioorg. Med. Chem. Lett. 2008, 18, 5206.
19. Pierce, A. C.; Jacobs, M.; Stuver-Moody, C. J. Med. Chem. 1972, 2008, 51.
20. Cheney, I. W.; Yan, S.; Appleby, T.; Walker, H.; Vo, T.; Yao, N.; Hamatake, R.;
Hong, Z.; Wu, J. Z. Bioorg. Med. Chem. Lett. 2007, 17, 1679.
21. Holder, S.; Zemskova, M.; Zhang, C.; Tabrizizad, M.; Bremer, R.; Neidigh, J. W.;
Lilly, M. B. Mol. Cancer Ther. 2007, 6, 163.
22. Pogacic, V.; Bullock, A. N.; Fedorov, O.; Filippakopoulos, P.; Gasser, C.; Biondi,
A.; Meyer-Monard, S.; Knapp, S.; Schwaller, J. Cancer Res. 2007, 67, 6916.
23. Pastor, J.; Oyarzabal, J.; Saluste, G.; Alvarez, R. M.; Rivero, V.; Ramos, F.; Cendón,
E.; Blanco-Aparicio, C.; Ajenjo, N.; Cebria, A.; Albarrán, M. I.; Cebrián, D.;
Corrionero, A.; Fominaya, J.; Montoya, G. Mazzorana; M Bioorg. Med. Chem. Lett.
2012, 22, 1591.
24. Bullock, A. N.; Debreczeni, J. E.; Fedorov, O. Y.; Nelson, A.; Marsden, B. D.;
Knapp, S. J. Med. Chem. 2005, 48, 7604.
25. Qian, K. C.; Wang, L.; Hickey, E. R.; Studts, J.; Barringer, K.; Peng, C.; Kronkaitis,
A.; Li, J.; White, A.; Mische, S.; Farmer, B. J. Biol. Chem. 2005, 280, 6130.