great potential for applications in lanthanide, actinide and
transition metal separation and extraction, for light emitting
devices and for composite materials with diverse polymers.
Further investigations, involving simulations, are underway to
examine the formation of the europium complex with the
unusual coordination geometry, and whether the spacer unit
has an influence on a potential ion-pairing effect. We are
currently exploring other hydrophobic functionalised cations,
like tri-alkyl phosphonium, as well as their luminescence
characteristics of lanthanide complexes (Vis and NIR emitters).
A.M. thanks IAESTE for an internship at the QUILL
research centre. P.N. thanks the EPSRC for a RCUK fellowship.
The EPSRC UK National Crystallography Service (NCS) is
acknowledged for crystal data collection. The QUILL IAB is
acknowledged for their financial support.
Fig. 5 Crystal structure of the complex Eu(hfa)4(DMImC3P(O)Ph2).
Notes and references
The ellipsoids are shown at 40% probability.
1 R. B. Gordon, Proc. Natl. Acad. Sci. U. S. A., 2006, 103,
1209–1214.
2 Y. Baba, F. Kubota, N. Kamiya and M. Goto, J. Chem. Eng. Jpn.,
2011, 44, 679–685.
3 K. Nakashima, F. Kubota, T. Maruyama and M. Goto, Anal. Sci.,
2003, 19, 1097–1098.
4 A. Taubert, Topics in Current Chemistry, Springer, Berlin, Heidelberg,
2009, vol. 290, pp. 127–159.
5 K. Binnemans, Chem. Rev., 2007, 107, 2592–2614.
6 A. E. Visser, R. P. Swatloski, W. M. Reichert, J. H. Davis Jr,
R. D. Rogers, R. Mayton, S. Sheff and A. Wierzbicki, Chem.
Commun., 2001, 135–136.
7 A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff,
A. Wierzbicki, J. H. Davis and R. D. Rogers, Environ. Sci.
Technol., 2002, 36, 2523–2529.
b-diketonate complexes. From a solution of Eu(hfa)3ꢁ6H2O
(hfa = 1,1,1,5,5,5-hexafluoro-acetylacetonate), and the ionic
liquid [DMImC3P(O)Ph2][Tf2N] (1B) in methanol, an unexpected
complex, Eu(hfa)4(DMImC3P(O)Ph2) (3), crystallised out (see
Fig. 4 and crystal structure in Fig. 5). To our knowledge, there
is not a single other tetrakis b-diketonate complex of any
lanthanide reported that has an additional ligand coordinating
to the metal. Starting from Eu(hfa)3, the compound can be
formed according to the following equation:
2Eu(hfa)3 + [DMImC3P(O)Ph2][Tf2N] -
8 P. Nockemann, M. Pellens, K. van Hecke, L. van Meervelt,
J. Wouters, B. Thijs, E. Vanecht, T. N. Parac-Vogt, H. Mehdi,
S. Schaltin, J. Fransaer, S. Zahn, B. Kirchner and K. Binnemans,
Chemistry, 2010, 16, 1849–1858.
Eu(hfa)4(DMImC3P(O)Ph2)cryst + [Eu(hfa)2][Tf2N]sol
(1)
Driving force for the formation of this zwitterionic complex
may be the increased stability originating from the ion-pairing
between the negatively charged [Eu(hfa)4]ꢀ moiety and the
positively charged coordinating cation, [DMImC3P(O)Ph2]+.
The crystal structure of Eu(hfa)4(DMImC3P(O)Ph2) indicates
the presence of four hfa ligands in addition to the coordinating
phosphine oxide. The coordination number of the europium
complex is nine and forms a distorted tricapped trigonal
prism. The shortest Eu–O bond length is found for the oxygen
of the PQO ligand, of 2.302(9) A, whereas the other Eu–O
distances range from 2.387(9) to 2.451(6) A. The length of the
PQO bond in the solid state of the complex is 1.51(1) A longer
than the PQO distance in the structure of the free ligand of
1.489(2) A. There is strong C–Hꢁ ꢁ ꢁO hydrogen bonding found
from the C5 acidic proton of the imidazolium ring to two
oxygen atoms of the hfa ligand of an adjacent complex (2.44(1) A
and 2.64(8) A).
9 P. Nockemann, B. Thijs, T. N. Parac-Vogt, K. van Hecke,
L. van Meervelt, B. Tinant, I. Hartenbach, T. Schleid, V. T. Ngan,
M. T. Nguyen and K. Binnemans, Inorg. Chem., 2008, 47,
9987–9999.
10 H. Mehdi, K. Binnemans, K. van Hecke, L. van Meervelt and
P. Nockemann, Chem. Commun., 2010, 46, 234–236.
11 J. H. Davis Jr, ACS Symp. Ser., 2008, 818, 247.
12 I. L. Odinets, E. V. Sharova, O. I. Artyshin, K. A. Lyssenko,
Y. V. Nelyubina, G. V. Myasoedova, N. P. Molochnikova and
E. A. Zakharchenro, Dalton Trans., 2010, 39, 4170–4178.
13 A. Ouadi, O. Klimchuk, C. Gaillard and I. Billard, Green Chem.,
2007, 9, 1160–1162.
14 N. Tsoureas, A. Andreas and A. Tulloch, Organometallics, 2003,
22, 4750–4758.
15 P. Nockemann, E. Beurer, K. Driesen, R. van Deun, K. van Hecke,
L. van Meervelt and K. Binnemans, Chem. Commun., 2005,
4354–4356.
16 K. Lunstroot, K. Driesen, P. Nockemann, L. Viau, P. H. Mutin,
A. Vioux and K. Binnemans, Phys. Chem. Chem. Phys., 2010, 12,
1879–1885.
17 K. Lunstroot, K. Driesen, P. Nockemann, C. Gorller-Walrand,
¨
K. Binnemans, S. Bellayer, J. Le Bideau and A. Vioux, Chem.
Mater., 2006, 18, 5711–5715.
18 A. Bowden, P. N. Horton and A. W. G. Platt, Inorg. Chem., 2011,
50, 2553–2561.
19 J. Fawcett, A. W. G. Platt and D. R. Russell, Polyhedron, 2002, 21,
287–293.
In summary, we have synthesised and characterised a new
class of phosphine oxide bearing ionic liquids and demon-
strated their tuneable metal ligating abilities. Increasing
lengths of the spacer unit between cations and the phosphine
oxide group appear to increase the binding ability of the ligand
towards lanthanide metals. These novel ionic liquids have a
20 A. M. J. Lees and A. W. G. Platt, Inorg. Chem., 2003, 42,
4673–4679.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 6115–6117 6117