Please do not adjust margins
RSC Advances
Page 7 of 9
DOI: 10.1039/C6RA20767G
Journal Name
ARTICLE
respectively. The sum of three angles around Cu(1) centre are
357.64°( N(1)–Cu(1)–N(4) = 157.7(10)°, N(1)–Cu(1)–Br(1)
= 98.64(17)°, N(4)–Cu(1)–Br(1) = 101.3(9)°) indicating
three coordinating atoms are basically coplanar. It is different
from features 1D double zigzag chain motif and the
[Cu2Br4]2ꢀ counter ions are located between chains and bridge
two neighbouring single chains via Cu(1)ꢀBr(1) linkage
(2.7581(14) Å). The [Cu2Br4]2ꢀ cluster core is a planar divalent
anion. The bridging CuꢀBr distances (dCu(2)–Br(2) = 2.4171(14)
and dCu(2)–Br(2)#1) = 2.4034(16) Å) are longer than for the
terminal CuꢀBr bond length (dCu(2)–Br(1) = 2.3258(15) Å). In
Acknowledgements
∠
∠
We are grateful for financial support from NSFC (Grant Nos.
21671122, 21475078 and 21271120), 973 Program (Grant Nos.
2013CB933800) and the Taishan Scholar’s Construction
Project.
∠
1, 2
Notes and references
1
(a) W. L. Leong, J. J. Vittal, Chem. Rev., 2011, 111, 688. (b) R.
Mas-Ballesté, J. Gómez-Herrero, F. Zamora, Chem. Soc. Rev.,
2010, 39, 4220. (c) Z. Wang, G. Chen, K. Ding, Chem. Rev.,
2009, 109, 322. (d) Y. Cui, Y. Yue, G. Qian, B. Chen, Chem.
Rev., 2012, 112, 1126. (e) C. He, D. Liu, W. Lin, Chem. Rev.,
2015, 115, 11079.
addition, the acute CuꢀBrꢀCu angle in the moiety (
∠Cu(2)#1ꢀ
Br(2)ꢀCu(2) = 68.37(5) ) results in a short Cu⋅⋅⋅Cu distance of
°
2.709 (15) Å. These bond lengths and angles are constituent
with those found in other reported [Cu2Br4]2ꢀ anions.34
The 2ꢀcatalysed styrene oxide alcoholysis was carried out under
2
(a) R. Peng, M. Li, D. Li, Coord. Chem. Rev., 2010, 254, 1. (b)
X. L. Wang, C. Qin, E. B. Wang, Z. M. Su, Y. G. Li, L. Xu, Angew.
Chem., Int. Ed., 2006, 45, 7411. (c) A. J. Blake, N. R. Brooks,
N. R. Champness, P. A. Cooke, A. M. Deveson, D. Fenske, P.
Hubberstey, W. S. Li, M. Schröder, J. Chem. Soc., Dalton
Trans., 1999, 2103. (d) C. A. Bignozzi, R. Argazzi, C. J.
Kleverlaan, Chem. Soc. Rev., 2000, 29, 87. (e) M. Munakata,
L. P. Wu, T. Kuroda-Sowa, Adv. Inorg. Chem., 1999, 46, 173.
(f) N. Chen, M.-X. Li, P. Yang, X. He, M. Shao, S.-R. Zhu, Cryst.
Growth Des., 2013, 13, 2650-2660.
the same conditions (2 mol %, MeOH, 50
conversion is only up to 22% (selectivity 99 %). In addition, the
catalytic activity of for ꢀbromophenol acylation and
°C, 7 h), but the
>
2
p
phenylacetyleneꢀparaformaldehydeꢀpiperidine A3 coupling
reactions were also examined under the reaction conditions.
The corresponding yields for acetylated product (5 mol % of 2,
3
4
M. Knorr, A. Bonnot, A. Lapprand, A. Khatyr, C. Strohmann,
M. M. Kubicki, Y. Rousselin, P. D. Harvey, Inorg. Chem., 2015,
54, 4076-4093.
(a) F. Minisci, Acc. Chem. Res., 1975, 8, 165-171. (b) D.
Bellus, Pure Appl. Chem., 1985, 57, 1827-1838. (c) S. Lal, J.
́
McNally, A. J. P. White, S. Dıez-González, Organometallics,
2011, 30, 6225–6232. (d) H. Zhou, D. Peng, B. Qin, Z. Hou, X,
Liu, X. Feng, J. Org. Chem., 2007, 72, 10302–10304. (e) M. J.
Pouy, S. A. Delp, J. Uddin, V. M. Ramdeen, N. A. Cochrane, G.
C. Fortman, T. B. Gunnoe, T. R. Cundari, M. Sabat, W. H.
2h) and threeꢀcomponent coupling product (5 mol % of 2, 6 h)
are only 41 and 38 %, respectively. Considering that 1 and 2
possess the same 1D chain backbones, the distinct catalytic
abilities should be mainly resulted from the different Cu(I)ꢀ
containing anions of [CuBr2]ꢀ and [Cu2Br4]2ꢀ. According to the
reported mechanism,35 the CPs catalyst might initially coordinate
with styrene oxide by way of an acidꢀbase interaction to produce
an increase in the electrophilic nature of the more substituted
carbon of the substrate (polarization of the CꢀO bond); secondly,
this partially positive charged carbon atom is attacked by the
methanol to generate the 2ꢀmethoxyꢀ2ꢀphenylethanol product.
Compared to 2 with the embedded [Cu2Br4]2ꢀ balanced anions,
the [CuBr2]ꢀ outerꢀhanging type counter ions, are more exposed,
which would facilitate the formation of the acidꢀbase pair
between styrene oxide and 1, consequently, the generation of the
methanolysis product. In addition, the previous works have well
demonstrated that the catalyst “electrophilic activation” plays a
central role in phenol acetylation36 and A3ꢀcoupling reaction.37
Myers, ACS Catal., 2012,
I. Merino, E. Rubio, M. P. Gamasa, Inorg. Chem., 2009, 48
2, 2182–2193. (f) M. Panera, J. Díez,
,
11147–11160. (g) O. P. Pereshivko, V. A. Peshkov, E. V. Van
der Eycken, Org. Lett., 2010, 12, 2638-2641. (h) X. Zhao, G.
Wu, Y. Zhang, J. Wang, J. Am. Chem. Soc., 2011, 133, 3296-
3299.
(a) J. K. McIntyre, D. H. Baldwin, J. P. Meador, N. L. Scholz,
Environ. Sci. Technol., 2008, 42, 1352-1358. (b) Y. S. Hedberg,
J. F. Hedberg, G. Herting, S. Goidanich, I. O. Wallinder,
Environ. Sci. Technol., 2014, 48, 1372-1381.
5
6
7
J. Otera, Esterification: Methods, Reactions and Applications,
1st ed. Wiley-VCH, 2003.
So the more exposed CuBr2ꢀLewis acid centre in
1 is sterically
(a) E. Vedejs, S. T. Diver, J. Am. Chem. Soc., 1993, 115, 3358.
(b) K. Ishihara, M. Kubota, H. Kurihan, H. Yamamoto, J. Am.
Chem. Soc., 1995, 117, 4413-4414. (c) P. A. Procopriou, S. P.
D. Baugh, S. S. Flack, G. G. A. Inglis, Chem. Commun., 1996,
2625-2626. (d) A. Orita, C. Tanahashi, A. Kakuda, J. Otera, J.
Org. Chem., 2001, 66, 8926-8934.
less hindered for the nucleophilic substrates accesses, which
would logically facilitate the reactions. Therefore, the CuBr2
moiety should be mainly responsible for the catalytic activity.
8
9
(a) A. Jenmalm, W. Berts, Y.-L. Li, K. Luthman, I. Csoregh, U.
Hacksell, J. Org. Chem., 1994, 59, 1139-1148. (b) M. Miura,
Conclusions
M. Enna, K. Okuro, M. Nomura, J. Org. Chem., 1995, 60
,
In summary, we report a CuBr2 anion balanced 1D coordination
polymer based on a fluoreneꢀbased ligand. The CuBr2 moiety
attaches to 1D Cu(I)ꢀCP backbone via weak Cu⋅⋅⋅Cu binding
interaction as an outerꢀhanging species to generate a CPꢀ
supported type material. Furthermore, this material serves as a
highly effective multifunctional heterogeneous catalyst to
promote phenol acetylation, styrene oxide methanolysis, and
A3ꢀcoupling (aldehydeꢀalkyneꢀamine) reactions under mild
4999-5004.
(a) C. Wei, Z. Li, C.-J. Li, Org. Lett., 2003, 5, 4473-4475. (b) V.
K. Y. Lo, Y. Liu, M. K. Wong, C. M. Che, Org. Lett., 2006,
1529-1532. (c) C. Fisher, E. M. Carreira, Org. Lett., 2001,
8
3
,
,
4319-4321. (d) S. Sakahuchi, T. Mizuta, M. Fyruwan, T. Kubo,
Y. Ishii, Chem. Commun., 2004, 1638-1639.
10 (a) M.Bandini, M. Fagioli, A. Melloni, A. Umani-Ronchi, Adv.
Synth. Catal., 2004, 346, 573. (b) G. Sekar, V. K. Singh, J. Org.
Chem., 1999, 64, 287. (c) W.-H. Leung, E. K. F. Chow, M.-C.
reaction conditions
.
Wu, P. W. Y. Kum, L. L. Yeung, Tetrahedron Lett., 1995, 36,
107. (d) G. H. Posner, D. Z. Rogers, J. Am. Chem. Soc., 1977,
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins