T. Kim et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4122–4126
4125
M. Med. Clin. North Am. 2011, 95, 875; (d) Ehsesa, J. A.; Lacrazb, G.; Giroixb, M.-
H.; Schmidlinc, F.; Coulaudb, J.; Kassisb, N.; Irmingerd, J.-C.; Kergoatc, M.;
Porthab, B.; Homo-Delarcheb, F.; Donath, M. Y. Proc. Natl. Acad. Sci. U.S.A. 2009,
106, 13998; (e) Ogawa, W.; Kasuga, M. Science 2008, 322, 1483; (f) Andreozzi,
F.; Laratta, E.; Cardellini, M.; Marini, M. A.; Lauro, R.; Hribal, M. L.; Perticone, F.;
Sesti, G. Diabetes 2006, 55, 2021; (g) Henke, B. R. J. Med. Chem. 2004, 47, 4118.
2. (a) Gross, B.; Staels, B. Best Pract. Res. Clin. Endocrinol. 2007, 21, 687; (b)
Akiyama, T. E.; Meinke, P. T.; Berger, J. P. Curr. Diab. Rep. 2005, 5, 45; (c) Ferré, P.
Diabetes 2004, 53, 43; (d) Berger, J.; Moller, D. E. Annu. Rev. Med. 2002, 3, 409;
(e) Kersten, S.; Desvergne, B.; Wahli, W. Nature 2000, 405, 421.
3. (a) Barroso, E.; Eyre, E.; Palomer, X.; Vázquez-Carrera, M. Biochem. Pharmacol.
2011, 81, 534; (b) Wagner, K. D.; Wagner, N. Pharmacol. Ther. 2010, 125, 423; (c)
Grimaldi, P. A. Curr. Opin. Lipidol. 2010, 21, 186; (d) Coll, T.; Rodrïguez-Calvo, R.;
Barroso, E.; Serrano, L.; Eyre, E.; Palomer, X.; Vázquez-Carrera, M. Curr. Mol.
Pharmacol. 2009, 2, 46; (e) Rosen, E. D.; Spiegelman, B. M. Nature 2006, 444,
847; (f) Staels, B.; Fruchart, J. C. Diabetes 2005, 54, 2460; (g) Evans, R. M.; Barish,
G. D.; Wang, Y. X. Nat. Med. 2004, 10, 355; (h) Desvergne, B.; Michalik, L.; Wahli,
W. Mol. Endocrinol. 2004, 18, 1321.
PPARd. However, APH-4 (PPAR
and APH-11 (PPAR , EC50 = 6
tive transcriptional activators of both PPAR
ited similar PPAR agonist activity to but better PPAR
activity than APH-1 (PPAR , EC50 = 4 M; PPAR , EC50 = 5
30 M, APH-11 had higher agonist efficacy (PPAR , 87%; PPAR
98%) than APH-1 (PPAR , 66%; PPAR , 83%), but APH-4 induced cyto-
toxicity. We then examined whether the APH derivatives could di-
rectly bind to PPAR or PPAR by using LanthaScreen™ technology
(Invitrogen) in a TR-FRET PPAR competitive binding assay (Invit-
rogen).11 APH-4 exhibited increased binding affinity (IC50 = 1.21
and 0.53 M, respectively) for PPAR and PPAR compared with
APH-1 (IC50 = 1.52 M and 0.85 M, respectively); APH-11 exhibited
increased binding affinity only for PPAR (IC50 = 0.65 M).
To explore the potential effects of the APH derivatives on adipo-
genesis, 3T3-L1 preadipocytes were differentiated with the deriva-
tives for 8 days in combination with the adipogenic IDX cocktail
(insulin, dexamethasone, and IBMX).12 When preadipocytes differ-
entiated into adipocytes, morphological changes were observed
because of the cytoplasmic accumulation of lipid droplets. Adipo-
cyte differentiation was confirmed by Oil Red O staining to observe
lipid droplet accumulation. Lipid droplet accumulation in adipo-
cytes was significantly greater with the APH-1 treatment than
without the APH-1 treatment (Fig. 2). However, the APH-4 and
APH-11 treatments decreased lipid droplet accumulation to a
greater extent than the APH-1 treatment. APH-4 and APH-11 had
a
l
, EC50 = 4
M; PPAR , EC50 = 5
and PPAR
l
M; PPAR
c
, EC50 = 5
M) were effec-
; they exhib-
agonist
M). At
lM)
a
c
l
a
c
c
a
a
l
c
l
l
a
c,
a
c
a
c
a/c
lM
l
a
c
l
l
c
l
4. Kendall, D. M.; Rubin, C. J.; Mohideen, P.; Ledeine, J. M.; Belder, R.; Gross, J.;
Norwood, P.; O’Mahony, M.; Sall, K.; Sloan, G.; Roberts, A.; Fiedorek, F. T.;
DeFronzo, R. A. Diabetes Care. 2006, 29, 1016.
5. Liao, J.; Soltani, Z.; Ebenezer, P.; Isidro-Carrión, A. A.; Zhang, R.; Asghar, A.; Aguilar,
E.; Francis, J.; Hu, X.; Ferder, L.; Reisin, E. Nephron. Exp. Nephrol. 2010, 114, 61.
6. (a) Matralis, A. N.; Katselou, M. G.; Nikitakis, A.; Kourounakis, A. P. J. Med. Chem.
2011, 54, 5583; (b) Asano, S.; Ban, H.; Tsuboya, N.; Uno, S.; Kino, K.; Ioriya, K.;
Kitano, M.; Ueno, Y. J. Med. Chem. 2010, 53, 3284; (c) Bailey, C. J. Diab. Vasc. Dis.
Res. 2007, 4, 161; (d) Pourcet, B.; Fruchart, J. C.; Staels, B.; Glineur, C. Expert.
Opin. Emerg. Drugs 2006, 11, 379; (e) Chaput, E.; Saladin, R.; Silvestre, M.; Edgar,
A. D. Biochem. Biophys. Res. Commun. 2000, 271, 445.
7. (a) Huang, T. H.; Teoh, A. W.; Lin, B. L.; Lin, D. S.; Roufogalis, B. Pharmacol. Res.
2009, 60, 195; (b) Itokawa, H.; Morris-Natschke, S. L.; Akiyama, T.; Lee, K. H. J.
Nat. Med. 2008, 62, 263.
8. (a) Cornick, C. L.; Strongitharm, B. H.; Sassano, G.; Rawlins, C.; Mayes, A. E.;
Joseph, A. N.; O’Dowd, J.; Stocker, C.; Wargent, E.; Cawthorne, M. A.; Brown, A. L.;
Arch, J. R. J. Nutr. Biochem. 2009, 20, 806; (b) Shih, C. C.; Lin, C. H.; Lin, W. L. Diab.
Res. Clin. Pract. 2008, 81, 134; (c) Li, Y.; Qi, Y.; Huang, T. H.; Yamahara, J.;
Roufogalis, B. D. Diabetes. Obes. Metab. 2008, 10, 10; (d) Lee, H. K.; Nam, G. W.;
Kim, S. H.; Lee, S. H. Exp. Dermatol. 2006, 15, 66; (e) Huang, T. H.; Peng, G.; Kota, B.
P.; Li, G. Q.; Yamahara, J.; Roufogalis, B. D.; Li, Y. Toxicol. Appl. Pharmacol. 2005,
207, 160; (f) Huang, T. H.; Yang, Q.; Harada, M.; Li, G. Q.; Yamahara, J.; Roufogalis,
B. D.; Li, Y. J. Cardiovasc. Pharmacol. 2005, 46, 856;(g) Park, S. H.;Ko, S. K.; Chung, S.
H. J. Ethnopharmacol. 2005, 102, 326;(h) Huang, T. H.;Peng, G.; Kota, B. P.; Li, G. Q.;
Yamahara, J.; Roufogalis, B. D.; Li, Y. Br. J. Pharmacol. 2005, 145, 767.
better PPARa agonist activity but not PPARc agonist activity than
APH-1, leading to the relative reduction in lipid droplet accumula-
tion in 3T3-L1 cells.13
In conclusion, we synthesized APH-1 and its derivatives by Pd-
catalyzed Suzuki–Miyaura cross-coupling of a common (E)-styryl
bromide intermediate and various aromatic trifluoroborate com-
pounds. Synthetic APH-1 stimulated PPAR
ity at a lower concentration than natural APH-1. Further, the APH-1
derivatives APH-4 and APH-11 were effective PPAR transcrip-
tional activators.14,15 Therefore, we suggest that APH-4 and APH-
11 are novel dual PPAR agonists and are potentially useful for
a/c transcriptional activ-
9. Kim, S. N.; Lee, W. J.; Kwon, H. C.; Ham, J.; Ahn, H. R.; Kim, M. S.; Nam, C.-W.;
Lee, J.-N.; Lim, J.-S. Patent WO09/014315 A1 (04, June, 2009).
a/c
10. (a) Topczewski, J. J.; Callahan, M. P.; Neighbors, J. D.; Wiemer, D. F. J. Am. Chem.
Soc. 2009, 131, 14630; (b) Topczewski, J. J.; Neighbors, J. D.; Wiemer, D. F. J. Org.
Chem. 2009, 74, 6965; (c) Neighbors, J. D.; Salnikova, M. S.; Wiemer, D. F.
Tetrahedron Lett. 2005, 46, 1321; (d) Treadwell, E. M.; Cermak, S. C.; Wiemer, D.
F. J. Org. Chem. 1999, 64, 8718.
a/c
treating T2DM and obesity by enhancing glucose and lipid
11. Schopfer, F. J.; Cole, M. P.; Groeger, A. L.; Chen, C. S.; Khoo, N. K.; Woodcock, S.
R.; Golin-Bisello, F.; Motanya, U. N.; Li, Y.; Zhang, J.; Garcia-Barrio, M. T.;
Rudolph, T. K.; Rudolph, V.; Bonacci, G.; Baker, P. R.; Xu, H. E.; Batthyany, C. I.;
Chen, Y. E.; Hallis, T. M.; Freeman, B. A. J. Biol. Chem. 2010, 285, 12321.
12. Kim, S. N.; Choi, H. Y.; Lee, W.; Park, G. M.; Shin, W. S.; Kim, Y. K. FEBS Lett.
2008, 582, 3465.
metabolism.
Acknowledgment
This research was supported by the KIST Institutional Program
(2Z03550), Republic of Korea.
13. PPARa target genes have been mainly concentrated on hepatocytes and PPARa
activation upregulates CPT1 (carnitine palmitoyltransferase 1) and ACS (acyl-
CoA synthetase) gene expression involved in mitochondrial fatty acid uptake
and oxidation. APH-4 treatment strongly increased CPT1 mRNA expression and
APH-11 treatment strongly increased ACS mRNA expression involved in fatty
acid b-oxidation in HepG2 cells than APH-1. Therefore we suggested that APH-
References and notes
1. (a) Ohtsubo, K.; Chen, M. Z.; Olefsky, J. M.; Marth, J. D. Nat. Med. 2011, 17, 1067;
(b) Donath, M. Y.; Shoelson, S. E. Nat. Rev. Immunol. 2011, 11, 98; (c) Reaven, G.
4 and APH-11 had better PPARa agonist activity than APH-1.