N. Demirezen et al. / Spectrochimica Acta Part A 94 (2012) 243–255
255
4. Conclusion
[2] P.J. Sadler, Adv. Inorg. Chem. 36 (1991) 1–48.
[3] N. Saha, S. Kar, J. Inorg. Nucl. Chem. 39 (1977) 195–200.
[4] D. Kovala, N. Hadjiliadis, J. Tsangaris, J. Less Common Met. 115 (1986) 1–5.
[5] J. Tsangaris, D. Sotiropoulos, A. Galinos, Inorg. Nucl. Chem. Lett. 14 (1978)
445–449.
[6] F. Demartin, M. Manassero, L. Naldini, M. Zoroddu, Inorg. Chim. Acta 213 (1983)
L213–L214.
[7] L. Naldini, M. Cabras, M. Zoroddu, F. Demartin, M. Manassero, M. Sansoni, Inorg.
Chim. Acta 88 (1984) 45–50.
[8] M. Zoroddu, L. Naldini, F. Demartin, N. Masciocchi, Inorg. Chim. Acta 128 (1987)
179–183.
[9] F. Demartin, N. Masciocchi, L. Naldini, A. Panzanelli, M. Zoroddu, Inorg. Chim.
Acta 171 (1990) 229–233.
[10] P.T. Muthiah, J.J. Robert, J. Chem. Crystallogr. 29 (1999) 223–226.
[11] U. Habib, A. Badshah, U. Flörke, R.A. Qureshi, B. Mirza, N. Islam, A. Khan, J. Chem.
Crystallogr. 39 (2009) 730–734.
[12] U. Habib, A. Badshah, U. Flörke, R.A. Qureshi, B. Mirza, N. Islam, A. Khan, J. Chem.
Crystallogr. 39 (2009) 607–611.
[13] B. Simo, L. Perello, R. Ortiz, A. Castineiras, J. Latorre, E. Canton, J. Inorg. Biochem.
81 (2000) 275–283.
[14] B. Seekhon, H. Randhawa, H. Sahai, Synth. React. Inorg. Met.-Org. Chem. 29
(1999) 309–321.
[15] J.E. Weder, C.T. Dillon, T.W. Hambley, B.J. Kennedy, P.A. Lay, J.R. Biffin, H.L.
Regtop, N.M. Davis, Coord. Chem. Rev. 232 (2002) 95–126.
[16] P.A. Ajibade, G.A. Kolawole, Transit. Met. Chem. 33 (2008) 493–497.
[17] M.J. Clarke, Coord. Chem. Rev. 236 (2003) 207–231.
[18] P.A. Ajibade, G.A. Kolawole, Synth. React. Inorg. Met.-Org. Chem. 40 (2010)
273–278.
[19] P.A. Ajibade, G.A. Kolawole, J. Coord. Chem. 61 (2008) 3367–3374.
[20] P.A. Ajibade, G.A. Kolawole, P. O’Brien, J. Coord. Chem. 61 (2008)
328–340.
[21] M.V. Lokhande, Asian J. Chem. 18 (2006) 2662–2668.
[22] P.A. Ajibade, G.A. Kolawole, P. O’Brien, J. Coord. Chem. 59 (2006)
1621–1628.
[23] G. Karthikeyan, K.M. Raj, K.R. Elango, K.G. Kumar, J. Chem. Res. S (2004)
200–202.
[24] B.S. Sekhon, H.K. Sahai, H.S. Randhawa, Natl. Acad. Sci. Lett. 21 (1998) 76–78.
[25] F. Demartin, M. Manassero, L. Naldini, M.A. Zoroddu, Inorg. Chim. A: Art. Lett.
77 (1983) L213–L214.
[26] L. Naldini, M.A. Cabras, M.A. Zoroddu, F. Demartin, M. Manassero, M. Sansoni,
Inorg. Chim. A: Art. Lett. 88 (1984) 45–50.
[27] G. Psomas, J. Inorg. Biochem. 102 (2008) 1798–1811.
[28] Q. Xin, M. Zhong-Ying, X. Cheng-Zhi, X. Fei, Z. Yan-Wen, X. Jing-Yuan, Q. Zhao-
Yan, L. Jian-Shi, C. Gong-Jun, Y. Shi-Ping, J. Inorg. Biochem. 105 (2011) 728–737.
[29] M. Carter, A.J. Bard, M. Rodriguez, J. Am. Chem. Soc. 111 (1989) 8901–8911.
[30] S. Dey, S. Sarkar, T. Mukherjee, B. Mondal, E. Zangrando, J.P. Sutter, P. Chat-
topadhyay, Inorg. Chim. Acta 376 (2011) 129–135.
[31] J. Wang, Anal. Chim. Acta 469 (2002) 63–71.
[32] E. Paleˇcek, Electroanalysis 21 (2009) 239–251.
[33] Y. Yardim, E. Keskin, A. Levent, M. Ozsoz, Z. Senturk, Talanta 80 (2010)
1347–1355.
[34] M.A.B. Christopher, O.B. Ana Maria, H.P.S. Silvia, J. Electroanal. Chem. 366 (1994)
225–231.
[35] S.K. Shankara, J. Seetharamappa, S.N. Prashanth, Colloids Surf. B 82 (2011)
438–442.
[36] C.H. Collins, P.M. Lyne, J.M. Grange, Microbiological Methods, Butterworths &
Co. Ltd., London, 1989, pp. 103–115.
[37] J. Wang, A.N. Kawde, E. Sahlin, Analyst 125 (2000) 5–7.
[38] B. Dogan-Topal, B. Uslu, S.A. Ozkan, Biosens. Bioelectron. 24 (2009) 2358–2364.
[39] M. Dolaz, V. McKee, S. Urus, N. Demir, A.E. Sabik, A. Golcu, M. Tumer, Spec-
trochim. Acta A 76 (2010) 174–181.
[40] S.E. Castillo-Blum, N. Barba-Behrens, Coord. Chem. Rev. 196 (2000) 3–30.
[41] H. Muslu, A. Golcu, M. Tumer, M. Ozsoz, J. Coord. Chem. 64 (2011)
3393–3407.
[42] M. Kotoucek, J. Skopalova, D. Michalkova, Anal. Chim. Acta 353 (1997) 61–69.
[43] A. Golcu, B. Dogan, S. Ozkan, Talanta 67 (2005) 703–712.
[44] D. Tarinc, B. Dogan-Topal, M. Dolaz, A. Golcu, S.A. Ozkan, Curr. Anal. Chem. 6
(2010) 316–328.
[45] H. Muslu, A. Golcu, S.A. Ozkan, Curr. Anal. Chem. 6 (2010) 299–309.
[46] T.M. Kelly, A.B. Tossi, D.J. McConnel, T.C. Strekas, Nucleic Acids Res. 13 (1985)
6017–6034.
The synthesis and characterization of five new TMP to com-
plexes with Cu(II), Pt(II), Zn(II), Fe(III) and Ru(III) have been
synthesized with physicochemical and spectroscopic methods. The
study of the complexes interaction with CT DNA has been per-
formed with UV spectroscopy and cyclic voltammetry and it reveals
that the complexes can bind to DNA. UV spectroscopic titrations
have been used in order to calculate the binding strength of the
complexes with CT DNA which is mirrored in the intrinsic binding
constant Kb [Cu(TMP)Cl2] complex exhibits much higher intrinsic
binding constant to CT DNA than the other complexes. The results
have been described in this study show that changing the metal
environment can modulate the binding property of the complex
with DNA [42]. Information obtained from the present is helpful to
the development of nucleic acids molecular probes and therapeutic
agents. In addition, it would be of considerable interest if the novel
DNA adducts of [Cu(TMP)Cl2] complex led to a broader spectrum
of antibacterial activity. Cyclic voltammetric studies have shown
that all complexes bind to CT DNA by both intercalation and elec-
trostatic interaction. The most of bacterial infections now defy all
known antibiotics and the antibiotic resistance is a growing prob-
lem in our environment. There is a great need for new antibacterial
agents and metal complexes as novel derivatives of pyrimidines
can play an important role in this field. In most cases, it has been
evidenced that the antimicrobial activity of the complexes is com-
parable to free pyrimidine. According to our biological results,
because of the chelate effect, some complexes ([Cu(Cl)2(TMP)],
[Fe(Cl)3(TMP)(H2O)] and [Zn(Cl)2(TMP)]·(H2O)) exhibited higher
The investigation of drug–CT DNA interactions would provide
new compounds to be tested for an effect on a biochemical tar-
get, for the design of DNA biosensors, which will further become
DNA microchip systems [56]. In this paper, the interaction between
antibacterial drug TMP and its Cu(II), Zn(II), Pt(II), Fe(III), Ru(III) and
CT DNA has been investigated by voltammetry and spectrophotom-
etry for the first time. An electrochemical CT DNA biosensor has
been prepared by immobilizing CT DNA onto PGE surface. The oxi-
dation signal of guanine has been used as probe for the investigation
of the interaction between compounds and CT DNA. As a result of
DNA, a decrease has been observed in the response based on the
signal of guanine. This phenomenon can be explained by the dam-
age on the oxidizable group of electroactive base guanine because
of the diffusion of compounds [57]. Also, interaction of CT DNA in
different concentrations with compounds, positive/negative peak
potentials shift may indicate that the compound binding to DNA by
both intercalation and electrostatic interaction. It is clear that, the
results of spectrophotometry and voltammetry used glassy carbon
electrode are in accordance with the results of voltammetry used
PGE. The utility of this electrochemical biosensor for the interaction
between CT DNA and compounds are cost effective and it provides
rapid detection.
[47] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am.
Chem. Soc. 111 (1989) 3053–3063.
Acknowledgments
[48] H. Chao, W.-J. Mei, Q.-W. Huang, L.-N. Ji, J. Inorg. Biochem. 92 (2002) 165–170.
[49] A. Dimitrakopoulou, C. Dendrinou-Samara, A.A. Pantazaki, M. Alexiou, E. Nord-
lander, D.P. Kessissoglou, J. Inorg. Biochem. 102 (2008) 618–628.
[50] M.T. Carter, A.J. Bard, J. Am. Chem. Soc. 109 (1987) 7528–7530.
[51] S.-S. Zhang, S.-Y. Niu, B. Qu, G.-F. Jie, H. Xu, C.-F. Ding, J. Inorg. Biochem. 99
(2005) 2340–2347.
[52] S. Tabassum, S. Parveen, F. Arjmand, Acta Biomater. 1 (2005) 677–689.
[53] S.K. Mandal, K. Nag, J. Chem. Soc. Dalton Trans. 11 (1983) 2429–2434.
[54] E. Chartone-Souza, T.L. Loyola, M.B. Rodriguez, M.-A. de, B.C. Menezes, N.A. Rey,
E.C. Pereira-Maia, J. Inorg. Biochem. 99 (2005) 1001–1008.
[55] A.S. Gordon, L.D. Howell, V. Harwood, Can. J. Microbiol. 40 (1994) 408–411.
[56] A. Erdem, M. Ozsoz, Electroanalysis 14 (2002) 965.
[57] L.L. Wu, J.Z. Zhou, J. Luo, Electrochim. Acta 45 (2000) 2923.
The authors wish to thank TUBITAK (Project No.: 109T020),
KSU (Project No.: 2009/4-12 and Project No.: 2010/5-19) for the
financial supports and Prof. Dr. Metin Dıgrak (Department of Biol-
ogy, Faculty of Science and Letters, University of Kahramanmaras
Sutcu Imam, Campuse of Avsar, 46100 Kahramanmaras, Turkey) for
antimicrobial studies.
References
[1] L. Rajith, K.G. Kumar, Drug Test. Anal. 2 (2010) 436–441.