LETTER
Metallacarborane Phosphoric Acid as a Hydrogenation Catalyst
797
(10) Farras, P.; Juarez-Perez, E. J.; Lepsik, M.; Luque, R.; Nunez,
R.; Teixidore, F. Chem. Soc. Rev. 2012, 41, 3445.
(11) Grimes, R. S. Carboranes; Elsevier: Amsterdam, 2011.
(12) Colacot, T. J.; Hosmane, N. S. Z. Anorg. Allg. Chem. 2005,
631, 2659.
A possible three-component transition state for the reac-
tion catalyzed by 1 is shown in Figure 2. A previous DFT
study26 found that the Z-isomer (Ar1 and Ar2 in the syn
conformation) was favored.
(13) Bauer, S.; Hey-Hawkins, E. In Boron Sciences. New
Technologies and Applications; Hosmane, N. S., Ed.; CRC
Press: Boca Raton, FL, 2012, 529.
(14) Plesek, J.; Gruner, B.; Cisarova, I.; Baca, J.; Selucky, P.;
Rais, J. J. Organomet. Chem. 2002, 657, 59.
(15) Lazarev, L. N.; Lyubtsev, R. L.; Galkin, B. Y.;
Romanovskii, V. N.; Shishkin, D. N.; Kyrs, M.; Selucky, P.;
Rais, J.; Hermanek, S.; Plesek, J. Patent USSR, 1,031,088 ,
1981.
(16) Leśnikowski, Z. J.; Paradowska, E.; Olejniczak, A. B.;
Studzińska, M.; Seekamp, P.; Schüßler, U.; Gabel, D.;
Schinazi, R. F.; Plešek, J. Bioorg. Med. Chem. 2005, 13,
4168.
In conclusion, a new catalyst for the hydrogenation of ar-
omatic ketimines based on a metallabisdicarbollide-type
structural scaffold bearing a phosphoric acid bridge was
proposed. In the presence of this catalyst, the hydrogena-
tion of a range of substrates was achieved in high yield.
The versatility of the metallacarborane structure and
chemistry opens the way for the further development of
this new type of Brønsted acid catalyst.
Acknowledgment
This work was partially supported by a Grant-in-Aid for Scientific
Research on Innovative Areas, ‘Advanced Transformation by Orga-
nocatalysis’, from the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan; by a Grant-in Aid for Scientific
Research from the Japan Society for the Promotion of Science, and
by a grant from the European Regional Development Fund under
the Operational Programme Innovative Economy, POIG.01.01.02-
10-107/09 (SJ, ZJL). Partial funding from the Statutory Fund of
IMB PAS is also gratefully acknowledged. We thank Prof. Jaromir
Plešek (1927–2010) for the kind gift of compound 1 (chlorophos-
phate form) and Dr. Bohumir Grűner for his expertise and discus-
(17) Sibrian-Vazquez, M.; Vicente, M. G. H. In Boron Sciences.
New Technologies and Applications; Hosmane, N. S., Ed.;
CRC Press: Boca Raton, FL, 2011, 209.
(18) Olejniczak, A. B.; Corsini, M.; Fedi, S.; Zanello, P.;
Leśnikowski, Z. J. Electrochem. Commun. 2007, 9, 1007.
(19) Olejniczak, A. B.; Grűner, B.; Šicha, V.; Broniarek, S.;
Lesnikowski, Z. J. Electroanalysis 2009, 21, 501.
(20) Hall, I. H.; Warren, A. E.; Lee, C. C.; Wasczcak, M. D.;
Sneddon, L. G. Anticancer Res. 1998, 18, 951.
(21) Hall, I. H.; Lackey, C. B.; Kistler, T. D.; Durham, R. W.;
Russell, J. M.; Grimes, R. N. Anticancer Res. 2000, 20,
2345.
+
sion on the preparation of free acid 1(HNEt3 )(H+).
(22) Kozísek, M.; Cígler, P.; Lepsík, M.; Fanfrlík, J.; Rezácová,
P.; Brynda, J.; Pokorná, J.; Plesek, J.; Grüner, B.; Saskova,
K. G.; Vaclavikova, J.; Kral, V.; Konvalinka, J. J. Med.
Chem. 2008, 51, 4839.
(23) Rezacova, P.; Pokorna, J.; Brynda, J.; Kozisek, M.; Cigler,
P.; Lepsik, M.; Fanfrlik, J.; Rezac, J.; Saskova, K. G.;
Sieglova, I.; Plesek, J.; Sicha, V.; Gruner, B.; Oberwinkler,
H.; Sedlacek, J.; Krausslich, H. G.; Hobza, P.; Kral, V.;
Konvalinka, J. J. Med. Chem. 2009, 52, 7132.
References and Notes
(1) Henkel, T.; Brunne, R. M.; Müller, H.; Reichel, F. Angew.
Chem. Int. Ed. 1999, 38, 643.
(2) For recent reviews, see: (a) Nugent, T. C.; El-Shazly, M.
Adv. Synth. Catal. 2010, 352, 753. (b) Fleury-Brégeot, N.; de
la Fuente, V.; Castillón, S.; Claver, C. ChemCatChem 2010,
2, 1346. (c) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev.
2011, 111, 1713. (d) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.;
Zhou, Y.-G. Chem. Rev. 2012, 112, 2557.
(3) For a review on metal-catalyzed hydrosilylation, see: Riant,
O.; Mostefaï, N.; Courmarcel, J. Synthesis 2004, 2943.
(4) Ouellet, S. G.; Walji, A. M.; MacMillan, D. W. C. Acc.
Chem. Res. 2007, 40, 1327.
(5) (a) Rueping, M.; Azap, C.; Sugiono, E.; Theissmann, T.
Synlett 2005, 2367. (b) Menche, D.; Hassfeld, J.; Li, J.;
Menche, G.; Ritter, A.; Rudolph, S. Org. Lett. 2006, 8, 741.
(c) Menche, D.; Arikan, F. Synlett 2006, 841. (d) Zhang, Z.;
Schreiner, P. R. Synlett 2007, 1455.
(24) Preparation of 4a–k; General Procedure: All the reaction
flasks were dried by flame, and all reactions were carried out
under N2. All the solvents were distilled under nitrogen and
stored over 4 Å MS prior to use. Thin-layer chromatography
was performed on Merck 60 F254 silica gel plates and
visualization was accomplished by irradiation with UV light
or by treatment with a solution of phosphomolybdic acid
solution followed by heating. Ketimine 3a–k (13.0 mg,
+
0.05 mmol), 1(HNEt3 )(H+) (1.1 mg, 0.0025 mmol), and
Hantzsch ester (2; 0.07 mmol, 1.4 equiv) were mixed in
benzene (1 mL) in a flame-dried test tube containing dried
molecular sieves (5 Å, 50 mg) under a nitrogen atmosphere
at 50 °C for 20 h (not optimized). The resulting mixture was
filtered through Celite (washed with CH2Cl2) and then
evaporated under reduced pressure. The residue was purified
by preparative silica gel thin-layer chromatography
(hexane–EtOAc, 5:1 v/v).
(6) Bachu, P.; Zhu, C.; Akiyama, T. Tetrahedron Lett. 2013, 54,
3977.
(7) For reviews, see: (a) Ref. 4. (b) You, S.-L. Chem. Asian J.
2007, 2, 820. (c) Connon, S. J. Org. Biomol. Chem. 2007, 5,
3407. (d) Rueping, M.; Sugiono, E.; Schoepke, F. R. Synlett
2010, 852. (e) Rueping, M.; Dufour, J.; Schoepke, F. R.
Green Chem. 2011, 13, 1084. (f) Zheng, C.; You, S.-L.
Chem. Soc. Rev. 2012, 41, 2498.
(8) (a) Zhu, C.; Akiyama, T. Org. Lett. 2009, 11, 4180. (b) Zhu,
C.; Akiyama, T. Adv. Synth. Catal. 2010, 352, 1846. (c) Zhu,
C.; Akiyama, T. Synlett 2011, 1251. (d) Henseler, A.; Kato,
M.; Mori, K.; Akiyama, T. Angew. Chem. Int. Ed. 2011, 50,
8180. (e) Saito, K.; Akiyama, T. Chem. Commun. 2012, 48,
4573. (f) Sakamoto, T.; Mori, K.; Akiyama, T. Org. Lett.
2012, 14, 3312. (g) For a review, see: Zhu, C.; Falck, J. R.
ChemCatChem 2011, 3, 1850.
(25) NMR characteristics of 4a–k: NMR spectra were recorded
with a Unity Inova-400 instrument (Varian Ltd., 400 MHz
for 1H, 100 MHz for 13C) using CDCl3 as solvent. Chemical
shifts (δ) for 1H were referenced to tetramethylsilane (δ =
0.00 ppm) as an internal standard. Chemical shifts (δ) for 13
were referenced to the solvent signal (CDCl3; δ =
77.00 ppm).
C
N-(4-Methoxyphenyl)-1-(4-chlorophenyl)ethylamine
(4a):27 Yield: 94%; pale-yellow oil.1H NMR (400 MHz,
CDCl3): δ = 1.47 (d, J = 6.8 Hz, 3 H), 3.69 (s, 3 H), 4.37 (q,
J = 6.8 Hz, 1 H), 6.42–6.46 (m, 2 H), 6.66–6.71 (m, 2 H),
(9) Grimes, R. N. Coord. Chem. Rev. 2000, 200, 773.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 795–798