24, 6298; (e) A. M. Tondreau, C. Milsmann, A. D. Patrick, H. M. Hoyt,
E. Lobkovsky, K. Wieghardt and P. J. Chirik, J. Am. Chem. Soc., 2011,
132, 15046–15059.
and the mixture was stirred at room temperature for 30 minutes
before excess NH4PF6 (1.14 g, 7.03 mmol, 14.5 equiv.) was
added to precipitate the product. The brick-red solid was col-
lected by filtration, washed with ice cold methanol and air dried
to give 0.346 g (0.30 mmol, 62%) of 4g. Elemental analysis
calcd for C50H58CoF12N10P2: C, 52.31; H, 5.09; N, 12.20.
Found: C, 51.31; H, 5.14; N, 11.98.28 MALDI MS, m/z: 857
[4g ¬ 2 PF6]+, 1002 [4g ¬ PF6]. Magnetic susceptibility (aceto-
nitrile-d3, 297 K): μeff = 2.1(4) μB.
7 (a) S. C. Bart, K. Chlopek, E. Bill, M. W. Bouwkamp, E. Lobkovsky,
F. Neese, K. Wieghardt and P. J. Chirik, J. Am. Chem. Soc., 2006, 128,
13901–13912; (b) A. C. Bowman, C. Milsmann, C. C. H. Atienza,
E. Lobkovsky, K. Wieghardt and P. J. Chirik, J. Am. Chem. Soc., 2010,
132, 1676–1684; (c) A. C. Bowman, C. Milsmann, E. Bill,
E. Lobkovsky, T. Weyhermuller, K. Wieghardt and P. J. Chirik, Inorg.
Chem., 2010, 49, 6110–6123; (d) P. M. Budzelaar, B. de Bruin,
A. W. Gal, K. Wieghardt and J. L. van Lenthe, Inorg. Chem., 2001, 40,
4649–4655; (e) B. de Bruin, E. Bill, E. Bothe, T. Weyhermuller and
K. Wieghardt, Inorg. Chem., 2000, 39, 2936–2947.
8 C. C. H. Atienza, A. C. Bowman, E. Lobkovsky and P. J. Chirik, J. Am.
Chem. Soc., 2010, 132, 16343–16345.
Acknowledgements
9 (a) H. Nakazawa and M. Itazaki, in Topics in Organometallic Chemistry:
Iron Catalysis Fundamentals and Applications, ed. B. Plietker,
Springer, New York, NY, Editon edn, 2011, vol. 33, pp. 27–81;
(b) R. J. Trovitch, E. Lobkovsky, E. Bill and P. J. Chirik, Organometal-
lics, 2008, 27, 1470–1478; (c) R. J. Trovitch, E. Lobkovsky and P.
J. Chirik, J. Am. Chem. Soc., 2008, 130, 11631–11640; (d) S. C. Bart,
E. Lobkovsky and P. J. Chirik, J. Am. Chem. Soc., 2004, 126, 13794–
13807.
This material is based upon work supported as part of the Center
for Electrocatalysis, Transport Phenomena, and Materials
(CETM) for Innovative Energy Storage, an Energy Frontier
Research Center funded by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences under Award
Number DE-SC00001055.
10 G. J. P. Britovsek, J. England, S. K. Spitzmesser, A. J. P. White and D.
J. Williams, J. Chem. Soc., Dalton Trans., 2005, 945–955.
11 (a) D. F. Evans, J. Chem. Soc., 1959, 2003–2005; (b) S. K. Sur, J. Magn.
Reson., 1989, 82, 169–173.
References
12 R. S. Drago, Physical Methods for Chemists, Surfside Scientific Publish-
ers, Gainesville, FL, 2nd edn, 1992.
13 D. Gong, B. Wang, H. Cai, X. Zhang and L. Jiang, J. Organomet. Chem.,
2011, 696, 1584–1590.
14 D. Gong, B. Wang, C. Bai, J. Bi, F. Wang, W. Dong, X. Zhang and
L. Jiang, Polymer, 2009, 50, 6259–6264.
15 W. M. Reiff, N. E. Erickson and W. A. Baker Jr, Inorg. Chem., 1969, 8,
2019–2021.
1 G. Jerkiewicz, Electrocatalysis, 2010, 1, 1.
2 (a) R. H. Crabtree, Energy Environ. Sci., 2008, 1, 134–138;
(b) G. L. Soloveichik, J. P. Lemmon, J. -C. Zhao (General Electric
Company), USA Pat., 2008/0248339, 2008; (c) N. Kariya, A. Fukuoka
and M. Ichikawa, Chem. Commun., 2003, 690–691; (d) N. Kariya,
A. Fukuoka and M. Ichikawa, Phys. Chem. Chem. Phys., 2006, 8, 1724–
1730; (e) D. L. DuBois and R. M. Bullock, Eur. J. Inorg. Chem., 2011,
1017–1027; (f) A. D. Wilson, R. H. Newell, M. J. McNevin, J.
T. Muckerman, M. R. DuBois and D. L. duBois, J. Am. Chem. Soc.,
2006, 128, 358–366; (g) B. R. Galan, J. Schoffel, J. C. Linehan, C. Seu,
A. M. Appel, J. A. S. Roberts, M. L. Helm, U. J. Kilgore, J. Y. Yang,
D. L. DuBois and C. P. Kubiak, J. Am. Chem. Soc., 2011, 133, 12767–
12779.
3 (a) C. C. H. Atienza, C. Milsmann, E. Lobkovsky and P. J. Chirik,
Angew. Chem., Int. Ed., 2011, 50, 8143–8147; (b) A. M. A. Bennett
(DuPont), WO Pat., 98/27124, 1998; (c) C. Bianchini, G. Giambastiani,
I. G. Rios, G. Mantovani, A. Meli and A. M. Segarra, Coord. Chem.
Rev., 2006, 250, 1391–1418; (d) G. J. P. Britovsek, M. Bruce,
V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. Mastroianni, S.
J. McTavish, C. Redshaw, G. A. Sloan, S. Stromberg, A. J. P. White and
D. J. Williams, J. Am. Chem. Soc., 1999, 121, 8728–8740;
(e) G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S.
J. McTavish, G. A. Solan, A. J. P. White and D. J. Williams, Chem.
Commun., 1998, 849–850; (f) G. J. P. Britovsek, V. C. Gibson, S.
K. Spitzmesser, K. P. Tellmann, A. J. P. White and D. J. Williams,
J. Chem. Soc., Dalton Trans., 2002, 1159–1171; (g) V. C. Gibson,
C. Redshaw and G. A. Solan, Chem. Rev., 2007, 107, 1745–1776; (h) B.
L. Small and M. Brookhart, Macromolecules, 1999, 32, 2120–2130;
(i) B. L. Small, M. Brookhart and A. M. A. Bennett, J. Am. Chem. Soc.,
1998, 120, 4049–4050.
16 Y. Chen, R. Chen, C. Qian, X. Dong and J. Sun, Organometallics, 2003,
22, 4312–4321.
17 (a) D. H. McDaniel and H. C. Brown, J. Org. Chem., 1958, 23, 420–427;
(b) W. G. Herkstroeter, J. Am. Chem. Soc., 1973, 95, 8686–8691.
18 (a) T. Wang, G. Brudvig and V. S. Batista, J. Chem. Theory Comput.,
2010, 6, 755–760; (b) T. Wang, G. Brudvig and V. S. Batista, J. Chem.
Theory Comput., 2010, 6, 2395–2401.
19 (a) C. P. Kelly, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2007,
111, 408–422; (b) J. Sefcik and W. A. Goddard III, Geochim. Cosmo-
chim. Acta, 2001, 65, 4435–4443.
20 (a) A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098–
3100; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785–
789; (c) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
21 Jaguar, Schrodinger, LLC, New York, NY, Editon edn., 2010.
22 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299–310.
23 (a) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56,
2257–2261; (b) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley,
M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77,
3654–3665.
24 (a) T. H. Dunning Jr, J. Chem. Phys., 1989, 90, 1007–1023;
(b) R. A. Kendall, T. H. Dunning Jr and R. J. Harrison, J. Chem. Phys.,
1992, 96, 6796–6806; (c) D. E. Woon and T. H. Dunning Jr, J. Chem.
Phys., 1994, 100, 2975–2988.
4 (a) B. L. Small, Organometallics, 2003, 22, 3178–3183;
(b) K. P. Tellmann, V. C. Gibson, A. J. P. White and D. J. Williams, Orga-
nometallics, 2005, 24, 280–286.
5 (a) B. L. Small and M. Brookhart, J. Am. Chem. Soc., 1998, 120, 7143–
7144; (b) B. L. Small, R. Rios, E. R. Fernandez and M. J. Carney, Orga-
nometallics, 2007, 26, 1744–1749.
25 (a) D. J. Tannor, B. Marten, R. Murphy, R. A. Friesner, D. Sitkoff,
A. Nicholls, M. Ringnalda, W. A. Goddard III and B. Honig, J. Am.
Chem. Soc., 1994, 116, 11875–11882; (b) B. Marten, K. Kim, C. Cortis,
R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff and B. Honig,
J. Phys. Chem., 1996, 100, 11775–11788.
26 D. A. Edwards, S. D. Edwards, W. R. Martin, T. J. Pringle and
P. Thornton, Polyhedron, 1992, 11, 1569–1573.
27 J. Granifo, S. J. Bird, K. G. Orrell, A. G. Osborne and V. Sik, Inorg.
Chim. Acta, 1999, 295, 56–63.
28 Despite repeated attempts to obtain better elemental analysis data, the low
oxidation potential of this compound resulted in lower than expected C
and N values.
6 (a) M. W. Bouwkamp, S. C. Bart, E. J. Hawrelak, R. J. Trovitch,
E. Lobkovsky and P. J. Chirik, Chem. Commun., 2005, 3406–3408;
(b) M. J. Humphries, K. P. Tellmann, V. C. Gibson, A. J. P. White and D.
J. Williams, Organometallics, 2005, 24, 2039–2050; (c) T. M. Kooistra,
Q. Knijnenburg, J. M. M. Smits, A. D. Horton, P. M. Budzelaar and A.
W. Gal, Angew. Chem., Int. Ed., 2001, 40, 4719–4722; (d) J. Scott,
S. Gambarotta, I. Korobkov and P. M. Budzelaar, Organometallics, 2005,
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 3562–3573 | 3573