34
F. Sagui et al. / Journal of Molecular Catalysis B: Enzymatic 75 (2012) 27–34
lipase from Pseudomonas resulted to be diastereoselective trans-
forming the epimer at 41.176 min of (t,e)-16 into the acetylated
derivative with a retention time of 16.167 min.
Acknowledgments
We thank Dr. Martino Luigi di Salvo (Rome University), Dr.
Daniela Monti, Dr. Lara Baratto and Dr. Federica Loiacono (ICRM-
CNR) for their valuable technical assistance in the production of
l-TA and in the work-up of the biocatalyzed reactions. Thanks are
also due to Mr. Walter Panzeri (ICRM-CNR) for recording the NMR
spectra.
4.15. Immobilization of lipase from Pseudomonas
The enzyme (Lipase PS from Amano, 3 g) was carefully mixed
with celite (HyfloSuperCel, 10 g) and phosphate buffer 0.1 M pH = 7
was added (10 mL). The mixture was vigorously stirred and air dried
at room temperature for three days.
References
[1] P.M. Headley, S. Grillner, Trends Pharmacol. Sci. 11 (1990) 205–211.
[2] N.C. Danbolt, Prog. Neurobiol. 65 (2001) 1–105.
4.16. Preparative kinetic resolution of (t,e)-16
[3] R. Pellicciari, G. Costantino, A. Macchiarulo, Pharm. Acta Helv. 74 (2000)
231–237.
[4] V.R. Rao, S. Finkbeiner, Trends Neurosci. 30 (2007) 284–291.
[5] J.M. Schkeryantz, A.E. Kingston, M.P. Johnson, J. Med. Chem. 50 (2007)
2563–2568.
[6] Y. Kanai, M.A. Hediger, Eur. J. Pharmacol. 479 (2003) 237–247.
[7] P.M. Beart, R.D. O’Shea, Br. J. Pharmacol. 150 (2007) 5–17.
[8] G. Levi, M. Raiteri, Trends Neurosi. 16 (1993) 415–419.
[9] T. Mennini, E. Fumagalli, M. Gobbi, C. Fattorusso, B. Catalanotti, G. Campiani,
Eur. J. Pharmacol. 479 (2003) 291–296.
[10] G. Campiani, C. Fattorusso, M. De Angelis, B. Catalanotti, S. Butini, S. Fattorusso,
I. Fiorini, V. Nacci, E. Novellino, Curr. Pharm. Des. 9 (2003) 599–625.
[11] R.D. O’Shea, M.V. Fodera, K. Aprico, Y. Dehnes, N.C. Danbolt, D. Crawford, P.M.
Beart, Neurochem. Res. 27 (2002) 5–13.
To a solution of (t,e)-16 (100 mg, 0.283 mmol) in methyl tert-
butyl ether (MTBE, 18 mL) vinyl acetate (2 mL) and immobilized
(on celite) lipase from Pseudomonas (2 g) were added. The reac-
tion was shaken at 45 ◦C and 250 rpm for 4 days and monitored by
TLC (petroleum ether/EtOAc 6:4; Rf: (t,e)-16 = 0.41, (t)-19 = 0.69]
and by HPLC (column: Chiralpack IA, eluent: petroleum ether/i-
PrOH 9.5:0.5, flow: 0.6 mL/min, ꢁ = 254 nm, retention times:
(t)-19 = 16.167 min, (e)-16 = 44.475 min). Conversion (t)-16 → (t)-
19 resulted to be >98% by HPLC analysis. The reaction mixture
was filtered and the filtrate was concentrated in vacuo. The crude
residue was then purified by flash silica gel column chromatogra-
phy (petroleum ether/EtOAc 8:2) giving (t)-19 (45 mg, d.e. and e.e.
>98%) in 45% yield and (e)-16 (29 mg, d.e. and e.e. >98%) in 29%
yield.
[12] (a) M. Funicello, P. Conti, M. De Amici, C. De Micheli, T. Mennini, M. Gobbi, Mol.
Pharmacol. 66 (2004) 522–529;
(b) A. Pinto, P. Conti, M. De Amici, L. Tamborini, G. Grazioso, S. Colleoni, T. Men-
nini, M. Gobbi, C. De Micheli, Tetrahedron: Asymmetry 19 (2008) 867–875;
(c) S. Colleoni, A.A. Jensen, E. Landucci, E. Fumagalli, P. Conti, A. Pinto, M. De
Amici, D.E. Pellegrini-Giampietro, C. De Micheli, T. Mennini, M. Gobbi, J. Phar-
macol. Exp. Ther. 326 (2008) 646–656.
1H NMR (e)-16 (500 MHz, CDCl3) ı (ppm): 1.44 (s, 9H, CH3);
1.80–1.92 (m, 2H, H-4); 3.63–3.73 (m, 2H, H-5); 3.75 (s, 3H, OCH3);
4.08 (m, 1H, H-3); 4.34 (bs, 1H, H-2); 4.51 (s, 2H, H-6); 5.45 (bs, 1H,
NH); 7.28–7.35 (m, 5H, ArH).
[13] (a) K. Shimamoto, R. Sakai, K. Takaoka, N. Yumoto, T. Nakajima, S.G. Amara, Y.
Shigeri, Mol. Pharmacol. 65 (2004) 1008–1015;
(b) K. Shimamoto, Y. Shigeri, Y. Yasuda-Kamatani, B. Lebrun, N. Yumoto, T.
Nakajima, Bioorg. Med. Chem. Lett. 10 (2000) 2407–2410.
[14] R.J. Vandenberg, A.D. Mitrovic, M. Chebib, J. Balcar, G.A.R. Jhonston, Mol. Pharm.
51 (1997) 809.
[15] L. Tamborini, P. Conti, A. Pinto, S. Colleoni, M. Gobbi, C. De Micheli, Tetrahedron
65 (2009) 6083–6089.
[16] R. Contestabile, A. Paiardini, S. Pascarella, M.L. Di Salvo, S. D’Aguanno, F. Bossa,
FEBS J. 268 (2001) 6508–6525.
13C NMR (e)-16 (125 MHz, CDCl3) ı (ppm): 28.62 (CH3Boc);
33.42 (C-4); 52.63; 58.70; 68.81; 72.65; 73.70; 80.55; 128.00
(C–Ar); 128.11 (C–Ar); 128.78 (C–Ar); 138.10 (C–ipso); 156.04
(C–O); 171.37 (C–O).
1H NMR (t)-19 (500 MHz, CDCl3) ı (ppm): 1.45 (s, 9H, CH3);
1.93–1.96 (m, 2H, H-4); 1.97 (s, 3H, CH3CO); 3.48–3.55 (m, 2H, H-
5); 3.72 (s, 3H, OCH3); 4.45–4.51 (m, 3H, H-2, H-6); 5.18 (d, 1H,
J = 9.5 Hz, NH); 5.54 (m, 1H, H-3); 7.27–7.35 (m, 5H, ArH).
1H NMR (t)-19 (500 MHz, d6-benzene) ı (ppm): 1.41 (s, 9H, CH3);
1.54 (s, 3H, CH3CO); 1.83–1.95 (m, 2H, H-4); 3.22–3.37 (m, 2H, H-5);
3.30 (s, 3H, OCH3); 4.19–4.27 (2d, 2H, J = 12.1 Hz, H-6); 4.75 (dd, 1H,
J = 1.4, 9.7 Hz, H-2); 5.38 (d, 1H, J = 9.7 Hz, NH); 5.80 (m, 1H, H-3);
7.06–7.27 (m, 5H, ArH).
[17] (a) See, for instance: S. Riva, Trends Biotechnol. 24 (2006) 219–226;
(b) D. Monti, A. Candido, M.M. Cruz Silva, V. Kren, S. Riva, B. Danieli, Adv. Synth.
Catal. 347 (2005) 1168–1174;
(c) S. Riva, J. Mol. Catal. B: Enzym. 19–20 (2002) 43–54;
(d) G. Carrea, S. Riva, Angew. Chem. Int. Ed. 39 (2000) 2226–2254, and refer-
ences therein.
[18] R. Percudani, A. Peracchi, Embo Rep. 4 (2003) 850–854.
[19] N. Dückers, K. Baer, S. Simon, H. Gröger, W. Hummel, Appl. Microbiol. Biotech-
nol. 88 (2010) 409–424.
[20] (a) J. Steinreiber, K. Fesko, C. Reisinger, M. Schurmann, F. van Assema, M. Wol-
berg, D. Mink, H. Griengl, Tetrahedron 63 (2007) 918–926;
(b) K. Nishide, K. Shibata, T. Fujita, T. Kajimoto, C.H. Wong, M. Node, Heterocy-
cles 52 (2000) 1191;
4.17. Synthesis of tert-butyl (1S,2S)-1-(methoxycarbonyl)-
2-acetoxy-4-(benzyloxy)butyl carbamate ((e)-19)
(c) V.P. Vassilev, T. Uchiyama, T. Kajimoto, C.H. Wong, Tetrahedron Lett. 36
(1995) 4081–4084.
[21] (a) T. Kimura, V.P. Vassilev, G.J. Shen, C.H. Wong, J. Am. Chem. Soc. 119 (1997)
11734–11742;
(b) K. Shibata, K. Shingu, V.P. Vassilev, K. Nishide, T. Fujita, M. Node, T. Kajimoto,
C.H. Wong, Tetrahedron Lett. 37 (1996) 2791–2794.
[22] F. Sagui, P. Conti, G. Roda, R. Contestabile, S. Riva, Tetrahedron 64 (2008)
5079–5084.
[23] F. Sagui, PhD Thesis, University of Milan, 2007.
[24] M. Sato, N. Yoneda, N. Katagiri, H. Watanabe, C. Kaneko, Synthesis-Stuttgart
(1986) 672–674.
[25] (a) F. Secundo, M.L. Oppizzi, G. Carrea, M. De Amici, C. Dallanoce, Biocatal. Bio-
transform. 17 (1999) 241–250;
To a solution of (e)-16 (10 mg, 0.028 mmol) in THF (0.5 mL),
triethylamine (TEA, 0.04 mL, 0.238 mmol), acetic anhydride
(0.016 mL, 0.283 mmol) and dimethylaminopyridine (DMAP,
0.35 mg, 0.002 mmol) were added. The reaction was stirred at r.t.
for 24 h and monitored by TLC (petroleum ether/EtOAc 6:4: Rf:
(e)-19 = 0.69). The mixture was then concentrated in vacuo and
the residue taken up in EtOAc and washed (3× 0.5 mL) with HCl
(1 M). The organic layer was dried (Na2SO4) and concentratedunder
reduced pressure. The crude residue was purified by flash silica gel
column chromatography (petroleum ether/EtOAc 7:3) giving (e)-19
(7 mg) in 63% yield. HPLC (column: Chiralpack IA, eluent: petroleum
ether/i-PrOH 9.5:0.5, flow: 0.6 mL/min, ꢁ = 254 nm, retention times:
(e)-19 = 24.608 min).
(b) C. Dallanoce, M. De Amici, G. Carrea, F. Secundo, S. Castellano, C. De Micheli,
Tetrahedron-Asymmetry 11 (2000) 2741–2751;
(c) D. Pollard, B. Kosjek, in: Giacomo Carrea, Sergio Riva (Eds.), Organic Syn-
thesis with Enzymes in Non-Aqueous Media, Wiley–VCH; Verlag GmbH & Co.
KgaA, (2008) pp. 169–186.
[26] (a) M. Cygler, P. Grochulski, R.J. Kazlauskas, J.D. Schrag, F. Bouthillier, B. Rubin,
A.N. Serrequi, A.K. Gupta, J. Am Chem. Soc. 116 (1994) 3180–3186;
(b) R.J. Kazlauskas, A.N.E. Weissfloch, A.T. Rappaport, L.A. Cuccia, J. Org. Chem.
56 (1991) 2656–2665.
[27] G. Righi, S. Ciambrone, C. D’Achille, A. Leonelli, C. Bonini, Tetrahedron 62 (2006)
11821–11826.
1H NMR (e)-19 (500 MHz, CDCl3) ı (ppm): 1.44 (s, 9H, CH3);
1.86–1.99 (m, 2H, H-4); 1.98 (s, 3H, CH3CO); 3.44–3.54 (m, 2H, H-
5); 3.74 (s, 3H, OCH3); 4.42–4.50 (2d, 2H, J = 11.9, 11.9 Hz, H-6); 4.65
(bs, 1H, H-2); 5.28 (m, 1H, H-3); 5.41 (bs, 1H, NH); 7.28–7.35 (m,
5H, ArH).
[28] M. Alonso, A. Riera, Tetrahedron-Asymmetry 16 (2005) 3908–3912.
[29] J.-C. Lee, G.T. Kim, Y.K. Shim, S.H. Kang, Tetrahedron Lett. 42 (2001) 4519–4521.