monosubstituted olefins by CÀH bond oxidation has
constituted a significant breakthrough in this area.6 The
coupling of allenes7 or terminal alkynes8 with carboxylic
acids has also provided a powerful protocol for the for-
mation of allylic esters. Both of these elegant reactions
proceeded via a π-allyl metal intermediate, generated in
situ from the reaction between a CÀH bond and transition
metal catalyst.
Table 1. Optimization of Reaction Conditionsa
entry
catalyst
oxidant
TBHP
yieldb
1
2
3
4
5
6
Bu4NI
Bu4NI
Bu4NI
Bu4NI
Bu4NI
Bu4NI
87%
N.D.c
N.D.
N.D.
N.D.
N.D.
NaClO
H2O2
Scheme 1. Allylic Ester Synthesis via Radical Coupling
O2
BQ
Di-tert-butyl
peroxoide
À
7
Bu4NI
À
N.D.
N.D.
N.D.
N.D.
N.D.
71%d
50%e
8
TBHP
TBHP
TBHP
TBHP
TBHP
TBHP
9
Bu4NCl
Bu4NBr
Bu4NOH
Bu4NI
Bu4NI
10
11
12
13
The KharaschÀSosnovsky reaction,9 a Cu-catalyzed
esterification of an allylic CÀH bond with tert-butyl
peresters, is a classical method of allylic ester synthesis.
We herein describe a new, highly selective radical coupling
strategy to construct allylic esters. Compared with tert-
butyl peresters, carboxylic acids are commercially avail-
able or easily prepared. Free radical chemistry has ad-
vanced tremendously since its discovery in 1900;10 however,
the highly selective coupling of different radical species still
remains a challenge in radical chemistry.11
a Reaction conditions: 0.5 mmol of 4-chlorobenzoic acid 1b, 2.0
mmol of cyclohexene 2a, 20 mol % catalyst, 1.5 equiv of TBHP (70%
aqueous solution) in 2.0 mL of benzene at 80 °C for 8 h. b Isolated yield.
c Not detected. d 1.0 mmol of cyclohexene 2a was used. e 5 mol % catalyst
was used.
were encouraged by the initial result as it proved the
feasibility of coupling of acyloxy and allylic radicals. To
determine the utility of the transformation, commercially
inexpensive and abundant carboxylic acids were investi-
gated as potential acyloxy radical donors. Extending our
recent studies involving tetrabutylammonium iodide
(TBAI) catalyzed chemical reactions,13 we envisioned
converting carboxylic acids and alkenes to the correspond-
ing allylic ester using a similar, metal-free approach. 20 mol %
TBAI/1.5 equiv of TBHP (tert-butyl hydroperoxide) in
benzene at 80 °C was found by screening to give a high
yield (87%) of the desired allylic ester 3b without requir-
ing an inert atmosphere (Table 1, entry 1).
Table 1 reveals the effect of different catalysts and
oxidants on the efficiency of the allylic CÀH oxidation
process. The choice of oxidant was critical to the conver-
sion, as no desired allylic ester 3b was detected when any
oxidant other than TBHP was employed (entries 2À6).
To test our hypothesis, benzoyl peroxide, a well-known
precursor to acyloxy radicals,12 was coupled with cyclo-
hexene. This formedthe desiredallylicester3ain24% yield
(Scheme 1, GC yield). In spite of the low yield obtained, we
(5) (a) Xiang, J.; Orita, A.; Otera, J. Angew. Chem., Int. Ed. 2002, 41,
4117. (b) Meyer, M. E.; Ferreira, E. M.; Stoltz, B. M. Chem. Commun.
2006, 1316. (c) Mohan, K. V. V. K.; Narender, N.; Kulkarni, S. J. Green
Chem. 2006, 8, 368. (d) Zhang, L.; Luo, Y.; Fan, R.; Wu, J. Green Chem.
2007, 9, 1022.
(6) (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346.
(b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am.
Chem. Soc. 2005, 127, 6970. (c) Fraunhoffer, K. J.; Prabagaran, N.;
Sirois, L. E.; White, M. C. J. Am. Chem. Soc. 2006, 128, 9032. (d)
Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076. (e)
Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448. (f)
Stang, E. M.; White, M. C. Nat. Chem. 2009, 1, 547. (g) Vermeulen,
N. A.; Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2010, 132, 11323.
(h) Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem.
Soc. 2010, 132, 15116. (i) Stang, E. M.; White, M. C. Angew. Chem., Int.
Ed. 2011, 50, 2094. (j) Gormisky, P. E.; White, M. C. J. Am. Chem. Soc.
2011, 133, 12584. (k) Henderson, W. H.; Check, C. T.; Proust, N.;
Stambuli, J. P. Org. Lett. 2010, 12, 824. (l) Takenaka, K.; Akita, M.;
Tanigaki, Y.; Takizawa, S.; Sasai, H. Org. Lett. 2011, 13, 3506.
(7) (a) Al-Masum, M.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120,
3809. (b) Kim, I. S.; Krische, M. J. Org. Lett. 2008, 10, 513.
(8) (a) Lumbroso, A.; Koschker, P.; Vautravers, N. R.; Breit, B.
J. Am. Chem. Soc. 2011, 133, 2386. (b) Koschker, P.; Lumbroso, A.;
Breit, B. J. Am. Chem. Soc. 2011, 133, 20746. (c) Lumbroso, A.; Abermil,
N.; Breit, B. Chem. Sci. 2012, 3, 789.
(9) (a) Kharasch, M. S.; Sosnovsky, G. N.; Yang, C. J. Am. Chem.
Soc. 1959, 81, 5819. For reviews, see: (b) Andrus, M. B.; Lashley, J. C.
Tetrahedron 2002, 58, 845. (c) Eames, J.; Watkinson, M. Angew. Chem.,
Int. Ed. 2001, 40, 3567.
(10) Renaud, P.; Sibi, M. P. Radicals in Organic Synthesis; Wiley:
2001.
(11) (a) Studer, A. Chem.;Eur. J. 2001, 7, 1159. (b) Fischer, H.
Chem. Rev. 2001, 101, 3581. (c) Studer, A. Chem. Soc. Rev. 2004, 33, 267.
(12) (a) Nozaki, K.; Bartlett, P. D. J. Am. Chem. Soc. 1946, 68, 1686.
(b) Nozaki, K.; Bartlett, P. D. J. Am. Chem. Soc. 1946, 68, 2377.
(13) Recently, we and others reported Bu4NI-catalyzed reaction
using TBHP; see: (a) Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li,
H.; Xu, K.; Wan, X. Chem.;Eur. J. 2011, 17, 4085. (b) Wei, W.; Zhang,
C.; Xu, Y.; Wan, X. Chem. Commun. 2011, 47, 10827. (c) Chen, S.; Xu,
Y.; Wan, X. Org. Lett. 2011, 13, 6152. (d) Liu, Z.; Zhang, J.; Chen, S.;
Shi, E.; Xu, Y.; Wan, X. Angew. Chem., Int. Ed. 2012, 51, 3231. (e)
Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int.
Ed.2011, 50, 5331. (f) Froehr, T.; Sindlinger, C. P.; Kloeckner, U.;
Finkbeiner, P.Nachtsheim, B. J. Org. Lett. 2011, 13, 3754. (g) Ma, L.;
Wang, X.; Yu, W.; Han, B. Chem. Commun. 2011, 47, 11333. (h) Tang,
R.-Y.; Xie, Y.-X.; Xie, Y.-L.; Xiang, J.-N.; Li, J.-H. Chem. Commun.
2011, 47, 12867. (i) Xie, J.; Jiang, H.; Cheng, Y.; Zhu, C. Chem. Commun.
2012, 48, 979. (j) Kloeckner, U.; Weckenmann, N. M.; Nachtsheim, B. J.
Synlett 2012, 23, 97. (k) Zhu, C.; Wei, Y. ChemSusChem 2011, 4, 1082. (l)
Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.
(m) Jiang, H.; Huang, H.; Cao, H.; Qi, C. Org. Lett. 2010, 12, 5561. (n)
He, T.; Li, H.; Li, P.; Wang, L. Chem. Commun. 2011, 47, 8946. (o) Feng,
J.; Liang, S.; Chen, S.-Y.; Zhang, J.; Fu, S.-S.; Yu, X.-Q. Adv. Synth.
Catal. 2012, 354, 1287.
Org. Lett., Vol. 14, No. 13, 2012
3385