3674
Y. Mirabal-Gallardo et al. / Tetrahedron Letters 53 (2012) 3672–3675
Cl
N
N
NH4HCO3
(Boc)2O
NaN3
ZnBr2
Cl
N
Cl
NH2
N
Cbz-protection
N
N
18
CO2H
14
CO2H
CN
N
H
N
N
N
N
Py cat.
MeCN
DMF
H2O
O
HN
2-propanol
Cbz
Cbz
15
16
Cbz
Cbz
17
N
N
ML2
H2, Pd/C
N
N
N
N
N
L
N
N
HN
19
H
M
H2O/AcOH
Et3N, DMF
70 oC, 1 h
L
12a-c
Scheme 2. Straightforward synthesis of L-proline-tetrazole chiral ligand 19, and ESI(+)-MS of the Ru-catalyst obtained by the reaction of (p-cyRuCl)2 and 19.
evaluated the feasibility of the oxidation route through model
experiments in the total synthesis of (ꢀ)-Quinolactacin B6b that
would in turn be generated by electrochemically functionalizing13
the corresponding natural product (+)-1. Thus, with the electro-
chemical approach optimized we performed the reaction with
compound 13. As expected by previous model studies, the anodic
oxidation proceeded smoothly at ꢀ78 °C giving the desired hydro-
xy-isoindolobenzazepine intermediate. The expected regioselectiv-
References and notes
1. Valencia, E.; Freyer, A. J.; Shamma, M.; Fajardo, V. Tetrahedron Lett. 1984, 25,
599–602.
2. (a) Piko, B. E.; Keegan, A. L.; Leonard, M. S. Tetrahedron Lett. 2011, 52, 1981–
1982; (b) Onozaki, Y.; Kurono, N.; Senboku, H.; Tokuda, M.; Orito, K. J. Org.
Chem. 2009, 74, 5486–5495; (c) Fuwa, H.; Sasaki, M. Org. Biomol. Chem. 2007, 5,
1849–1853; (d) Taniguchi, T.; Iwasaki, K.; Uchiyama, M.; Tamura, O.; Ishibashi,
H. Org. Lett. 2005, 7, 4389–4390; (e) Fuchs, J. R.; Funk, R. L. Org. Lett. 2001, 3,
3923–3925; (f) Couty, S.; Meyer, C.; Cossy, J. Tetrahedron Lett. 2006, 47, 767–
769. references are cited therein.
3. Kise, N.; Isemoto, S.; Sakurai, T. J. Org. Chem. 2011, 76, 9856–9860.
4. (a)Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H.,
Eds.; Springer-Verlag, 2004; (b)Asymmetric Catalysis in Organic Synthesis;
Noyori, R., Ed.; John Wiley & Sons, 1994; (c) Teichert, J. F.; Feringa, B. L.
Angew. Chem., Int. Ed. 2010, 49, 2486–2528.
5. Comins, D. L.; Schilling, S.; Zhang, Y. Org. Lett. 2005, 7, 95–98.
6. (a) Santos, L. S.; Pilli, R. A.; Rawal, R. H. J. Org. Chem. 2004, 69, 1283–1289; (b)
Shankaraiah, N.; da Silva, W. A.; Andrade, C. K. Z.; Santos, L. S. Tetrahedron Lett.
2008, 49, 4289–4291; (c) Shankaraiah, N.; Santos, L. S. Tetrahedron Lett. 2009,
50, 520–523; (d) Silva, W. A.; Rodrigues, M. T.; Shankaraiah, N.; Ferreira, R. B.;
Andrade, C. K. Z.; Pilli, R. A.; Santos, L. S. Org. Lett. 2009, 11, 3238–3324.
7. (a) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1996, 118, 4916–4917; (b) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc.
2000, 122, 1466–1478; (c) Mao, J.; Baker, D. C. Org. Lett. 1999, 1, 841–843; (d)
James, B. R. Catal. Today 1997, 37, 209–221; (e) Kobayashi, S.; Ishitani, H. Chem.
Rev. 1999, 99, 1069–1094.
ity of hydroxylation to less substituted a-nitrogen carbon in cyclic
ring system has been extensively studied.14 The mechanism be-
hind the high regiocontrol was recently proposed by Onomura,14h
and suggested that stabilities of iminium ions might determine the
regioselectivities observed. Finally, the crude aminol was then oxi-
dized with catalytic TPAP (tetrapropylammonium perruthenate),
with N-methylmorpholine-N-oxide (NMO) as a co-oxidant in
CH2Cl2, to afford 1 in 63% yield from 13. Moreover, oxidation
employing o-iodoxybenzoic acid (IBX) in AcOEt15 led to lactam
(+)-1 in comparable yields (58–60%) with no epimerization of the
pyrrolidinone center. The physical and spectroscopic data of (+)-
Lennoxamine 1, ½a D20
ꢁ
+25 (c 0.8, CHCl3), were in excellent agree-
ment with those reported in the literature.5,16,17
8. (a) Kaldor, I.; Feldman, P. L.; Mook, R. A.; Ray, J. A.; Samano, V.; Sefler, A. M.;
Thompson, J. B.; Travis, B. R.; Boros, E. E. J. Org. Chem. 2001, 66, 3495–3501; (b)
Tietze, L. F.; Zhou, Y. F.; Topken, E. Eur. J. Org. Chem. 2000, 2247–2252; (c)
Meuzelaar, G. J.; Van Vliet Maat, L.; Sheldon, R. A. Eur. J. Org. Chem. 1999, 2315–
2321.
In summary, a new asymmetric route has been developed for
the construction of the chiral center in isoindolone core of iso-
indolobenzazepine alkaloid, by employing asymmetric catalysis
reaction. Our strategy allowed the use of L-proline tetrazole as chi-
ral ligand to obtain (+)-Lennoxamine skeleton in high ee% after five
9. Analytical data for compound 10: Mp 185–186 °C. FTIR (KBr film): 1644,
1510 cmꢀ1 1H NMR (300 MHz, CDCl3): d 2.83 (t, J 6.0 Hz, 2H), 3.58 (t, J 6.0 Hz,
.
steps in 34% overall yield from 8 and 9.
2H), 3.83 (s, 2H), 3.84 (s, 3H), 3.87 (s, 3H), 4.56 (s, 2H), 5.91 (s, 2H), 6.47 (s, 1H),
6.70 (s, 1H), 6.80–7.02 (m, 3H). HRMS, ESI(+)-MS: Cacld for [C20H21NO5 + H]+
356.1498. Found 356.1502.
Acknowledgments
10. (a) Tong, S.-T.; Harris, P. W. R.; Barker, D.; Brimble, M. A. Eur. J. Org. Chem. 2008,
164–170; (b) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4, 2525–2527; (c)
Hartikka, A.; Arvidsson, P. I. Eur. J. Org. Chem. 2005, 4287–4295.
FONDECYT 1110022 (LSS) and ‘‘Programa de Doctorado menc-
ión Investigación y Desarrollo de Productos Bioactivos (YMG)’’
are gratefully acknowledged. We thank Professor Dr. Felipe Laurie
for further corrections in the manuscript.
11. Analytical data for intermediate 13: ½a D20
ꢁ
+13 (c 0.5, CHCl3). Mp 178–180 °C (lit.
180–181 °C).1,12 FTIR (KBr film): 2822, 2775, 2750, 1621, 1505 cmꢀ1
.
1H NMR
(300 MHz, CDCl3): d 2.44–3.52 (m, 7H), 2.62 (dd, J 13.0 and 4.0 Hz, 1H), 3.82 (s,
3H), 3.87 (s, 3H), 4.36 (d, J 13.0 Hz, 1 H), 5.91 (s, 2H), 6.66 (s, 1H), 6.73 (2s, 2),