Z. N. Tisseh et al. / Tetrahedron Letters 53 (2012) 3603–3606
3605
venagel condensation of
1
and 2. Subsequent Michael-type
addition of the b-enamino ester 7 (formed in situ by reaction of
3 and DMA) to 6 yields intermediate 8. Finally, intermolecular
nucleophilic substitution of H2O on 8, followed by cyclization
and tautomerization affords the corresponding product 4. To help
clarify the proposed mechanism, first, the isatylidene malononitri-
le 6a was synthesized via condensation of isatin 1a and malononit-
rile, and then reaction of 6a with DMAD in the presence of DMA
afforded the corresponding product 4a in 83% yield.
In conclusion, an efficient, atom-economic, and environmen-
tally friendly method for the preparation of polysubstituted pyr-
ano-fused spirooxindoles using readily available starting
materials in EtOH is reported. Prominent among the advantages
of this method are operational simplicity, good yields, and the easy
work-up procedure employed.
Acknowledgement
We gratefully acknowledge financial support from the Research
Council of Shahid Beheshti University.
References and notes
1. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
2. (a) Lu, P.; Wang, Y. G. Synlett 2010, 165; (b) Ganem, B. Acc. Chem. Res. 2009, 42,
463; (c) Dömling, A. Chem. Rev. 2006, 106, 17.
3. (a) Gerencser, J.; Dorman, G.; Darva, F. QSAR Comb. Sci. 2006, 439; (b) Ramon, D.
J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602–1634.
4. (a) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 63, 2209; (b) Dounay, A. B.;
Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman, L. E.; Pfeifer, L. A.; Weiss,
M. M. J. Am. Chem. Soc. 2003, 125, 6261.
Figure 2. X-ray crystal structure (ORTEP) of compound 4a.
5. For selected reviews, see: (a) Sannigrahi, M. Tetrahedron 1999, 55, 9007; (b)
Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White, C. T. Spirocyclic
Systems In The Total Synthesis of Natural Products; ApSimon, J., Ed.; John Wiley
and Sons: New York, 1983; Vol. 5, p 264.
6. (a) Chang, M. Y.; Pai, C. L.; Kung, Y. H. Tetrahedron Lett. 2005, 46, 8463; (b)
Baran, S. P.; Richter, R. M. J. Am. Chem. Soc. 2005, 127, 15394; (c) Hilton, S. T.;
Ho, T. C. T.; Pljevaljcic, G.; Jones, K. Org. Lett. 2000, 2, 2639; (d) Cui, C. B.;
Kakeya, H.; Kada, G.; Onose, R.; Osada, H. J. Antibiot. 1996, 49, 527.
7. Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Eur. J. Med. Chem. 1993, 28, 517.
8. Cingolani, G. M.; Gualtteri, F.; Pigin, M. J. Med. Chem. 1961, 12, 531.
9. Wu, J. Y. C.; Fong, W. F.; Zhang, J. X.; Leung, C. H.; Kwong, H. L.; Yang, M. S.; Li,
D.; Cheung, H. Y. Eur. J. Pharmacol. 2003, 473, 9.
10. (a) Baraldi, P. G.; Manfredini, S.; Simoni, D.; Tabrizi, M. A.; Balzarini, J.; De
Clercq, E. J. Med. Chem. 1992, 35, 1877; (b) Perrella, F. W.; Chen, S. F.; Behrens,
D. L.; Kaltenbach, R. F.; Seitz, S. P. J. Med. Chem. 1994, 37, 2232.
11. (a) Kashman, Y.; Gustafson, K. R.; Fuller, R. W.; Cardellina, J. H.; McMahon, J. B.;
Currens, M. J.; Buckheit, R. W.; Hughes, S. H.; Gragg, G. M.; Boyd, M. R. J. Med.
Chem. 1992, 35, 2735; (b) Patil, A. D.; Freyer, A. J.; Eggleston, D. S.;
Waltiwanger, R. C.; Bean, M. F.; Taylor, P. B.; Caranfa, M. J.; Breen, A. L.;
Bartus, H. R.; Johnson, R. K.; Hertzberg, R. P.; Westley, J. W. J. Med. Chem. 1993,
36, 4131.
12. (a) Foye, W. O. Principi di Chemico Farmaceutica; Piccin: Padora, Italy, 1991,
416; (b) Andreani, L. L.; Lapi, E. Bull. Chim. Farm. 1960, 99, 583.
13. Sakhuja, R.; Panda, S.; Khanna, L.; Khurana, S.; Jain, S. Bioorg. Med. Chem. Lett.
2011, 21, 5465.
3
+ DMA
CO2R2
CO2R1
R1O2C
NC
N
H
CN
O
NH
CN
H2O
R2O2C
7
1
2
+
CN
O
N
R
N
R
H2O
6
8
R1O2C
R1O2C
OH
O
NH
CN
R2O2C
R2O2C
tautomerization
4
CN
CN
O
O
N
R
N
R
Scheme 3. Possible mechanism for the formation of product 4.
14. Joshi, K. C.; Jain, R.; Sharma, K.; Bhattacharya, S. K.; Goel, R. K. J. Indian Chem.
Soc. 1988, 65, 202.
15. Joshi, K. C.; Jain, R.; Arora, S. J. Indian Chem. Soc. 1988, 65, 277.
16. Nandakumar, A.; Thirumurugan, P.; Perumal, P. T.; Vembu, P.; Ponnuswamy, M.
N.; Ramesh, P. Bioorg. Med. Chem. Lett. 2010, 20, 4252.
17. Sun, J.; Xia, E. Y.; Wu, Q.; Yan, C. G. Org. Lett. 2010, 12, 3678.
18. Sun, J.; Xia, E. Y.; Wu, Q.; Yan, C. G. ACS Comb. Sci. 2011, 13, 421.
19. Sun, J.; Xia, E. Y.; Wu, Q.; Yan, C. G. ACS Comb. Sci. 2011, 13, 436.
20. Kiruthika, S. E.; Lakshmi, N. V.; Banu, B. R.; Perumal, P. T. Tetrahedron Lett. 2011,
52, 6508.
21. Bazgir, A.; Tisseh, Z. N.; Mirzaei, P. Terahedron Lett. 2008, 49, 5165.
22. Jadidi, K.; Ghahremanzadeh, R.; Bazgir, A. Tetrahedron 2009, 65, 2005.
23. Dabiri, M.; Tisseh, Z. N.; Nobahar, M.; Bazgir, A. Helv. Chim. Acta 2011, 94, 824.
24. Ghahremanzadeh, R.; Sayyafi, M.; Ahadi, S.; Bazgir, A. J. Comb. Chem. 2009, 11,
393.
the efficiency of the reaction and EtOH proved to be the best choice
(Table 2, entry 5).
Using the optimized conditions, a variety of isatins 1a–f and
dialkylacetylenedicarboxylates 3a–d were employed to evaluate
the substrate scope of the reaction. Pyranospirooxindoles 4a–l
were obtained in good yields (Fig. 1).25 As anticipated, these reac-
tions proceeded very cleanly at room temperature and no side
reactions were observed. All the compounds described in this Let-
ter have been synthesized for the first time.
The products 4 were stable solids, the structures of which were
fully characterized by IR, 1H NMR and 13C NMR spectroscopy, mass
spectrometry, and elemental analysis. The structure of 4a was con-
firmed by single-crystal X-ray analysis26 (Fig. 2).
25. General procedure for preparation of pyran-annulated spirooxindoles (4).
mixture of isatin 1 (1 mmol) and malononitrile (2) (1 mmol) in EtOH (3 mL)
was stirred for 15 min then treated with solution of dialkyl
acetylenedicarboxylate (1 mmol) and 3,4-dimethylaniline (1 mmol) in
A
a
We have not established an exact mechanism for the formation
of 4, however, a reasonable possibility is shown in Scheme 3. It is
reasonable to assume that product 4 results from the initial forma-
tion of intermediate isatylidene malononitrile 6 by standard Knoe-
3
EtOH (1 mL). The mixture was stirred at room temperature for 8 h. After
completion of the reaction (TLC, eluent: EtOAc/hexane, 1:2), the mixture was
filtered and the precipitate washed with H2O (5 mL) and EtOH (5 mL) to afford
the pure product 4. Dimethyl 20-amino-30-cyano-2-oxospiro[indoline-3,40-pyran]-