substrate scope, and expensive catalytic systems. Recently,
intramolecular electrophilic ipso-halocyclization of alkynes8
has emerged as an important method for the construc-
tion of spiro-carbocycles and heterocycles, allowing facile
installation of a halo group and quaternary spirocenter.
This method, to our knowledge, is limited to substrates
containing an alkyne group and has not yet been expanded
to alkene substrates. On the other hand, the functionalization
of alkenes represents a commonly employed strategy for the
construction of molecular complexity in organic synthesis.
Catalytic enantioselective olefin halocyclization reactions such
as halo-O-cyclizations (e.g., lactonization, etherification) and
halo-N-cyclizations (e.g., lactamization, aminocyclization)
have gained rapid development in recent years.9 However,
an intramolecular halo-C-spirocyclization procedure based
on alkene group has not been reported to date.10
We envisaged that suitable para-alkene substituted
anisole derivatives (1) under electrophilic halogenation in-
itiated dearomative spirocyclization would provide functio-
nalized azaspirocyclohexadienones (Scheme 1). In this paper,
we report such an efficient synthesis of highly functionalized
azaspirocyclohexadienones via the intramolecular alkene
electrophilic bromination initiated ipso-bromocyclization.
Figure 1. Representative azaspirocycle-based nature products.
Scheme 1. Proposed Electrophilic Halogenation Initiated
Dearomative Spirocyclization
ꢀ
(6) Rodrıguez-Solla, H.; Concellon, C.; Tuya, P.; Garcıa-Granda, S.;
Dıaz, M. R. Adv. Synth. Catal. 2012, 354, 295.
(7) For recent representative examples, see: (a) Swenton, J. S.;
Carpenter, K.; Chen, Y.; Kerns, M. L.; Morrow, G. W. J. Org. Chem.
1993, 58, 3308. (b) Hares, O.; Hobbs-Mallyon, D.; Whiting, D. A.
ꢀ
€
J. Chem. Soc., Perkin Trans. 1 1993, 148. (c) Dreau, M.-A.; Desmaele,
D.; Dumas, F.; d’Angelo, J. J. Org. Chem. 1993, 58, 2933. (d) Warrener,
R. N.; Liu, L.; Russell, R. A.; Tiekink, E. R. T. Synlett 1998, 387. (e) Liu,
L.; Wang, Z.; Zhao, F.; Xi, Z. J. Org. Chem. 2007, 72, 3484.
(8) For recent representative examples, see: (a) Appel, T. R.; Yehia,
€
Fanghanel, E. Eur. J. Org. Chem. 2003, 47. (b) Zhang, X.; Larock,
We began our exploration by testing model substrate
1a with 1,3-dibromo-5,5-dimethylhydantoin (DBDMH)
as the halide electrophile. To our delight, the reaction in
dichloromethane at rt proceeded very fast (<5 min) to
afford the desired product 2a in 20% yield (entry 1, Table 1).
The anti stereochemistry of product 2a was established by
X-ray analysis (see the Supporting Information). The reac-
tion at ꢀ20 °C was found to afford a much improved yield
(72%, entry 2, Table 1). As summarized in Table 1, several
halide electrophiles were further evaluated in this reaction.
Compared to the high activity of DMDBH, other halide
electrophiles such as N-bromoacetamide, DCDMH,
and NIS gave low conversions even at rt (entries 3ꢀ6,
Table 1).
N. A. M.; Baumeister, U.; Hartung, H.; Kluge, R.; Strohl, D.;
€
R. C. J. Am. Chem. Soc. 2005, 127, 12230. (c) Tang, B.-X.; Yin, Q.; Tang,
R.-Y.; Li, J.-H. J. Org. Chem. 2008, 73, 9008. (d) Yu, Q.-F.; Zhang,
Y.-H.; Yin, Q.; Tang, B.-X.; Tang, R.-Y.; Zhong, P.; Li, J.-H. J. Org.
Chem. 2008, 73, 3658. (e) Tang, B.-X.; Tang, D.-J.; Tang, S.; Yu, Q.-F.;
Zhang, Y.-H.; Liang, Y.; Zhong, P.; Li, J.-H. Org. Lett. 2008, 10, 1063.
(f) Tang, B.-X.; Zhang, Y.-H.; Song, R.-J.; Tang, D.-J.; Deng, G.-B.;
Wang, Z.-Q.; Xie, Y.-X.; Xia, Y.-Z.; Li, J.-H. J. Org. Chem. 2012, 77, 2837.
(9) For recent representative examples, see: (a) Kang, S. H.; Lee,
S. B.; Park, C. M. J. Am. Chem. Soc. 2003, 125, 15748. (b) Wang, M.;
Gao, L. X.; Mai, W. P.; Xia, A. X.; Wang, F.; Zhang, S. B. J. Org. Chem.
2004, 69, 2874. (c) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445,
900. (d) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B.
J. Am. Chem. Soc. 2010, 132, 3298. (e) Zhang, W.; Zheng, S.; Liu, N.;
Werness, J. B.; Guzei, I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132, 3664.
(f) Veitch, G. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2010, 49, 7332.
(g) Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura,
M.; Fujioka, H. Angew. Chem., Int. Ed. 2010, 49, 9174. (h) Denmark,
S. E.; Burk, M. T. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 20655. (i)
Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am. Chem.
Soc. 2010, 132, 15474. (j) Yousefi, R.; Whitehead, D. C.; Mueller, J. M.;
Staples, R. J.; Borhan, B. Org. Lett. 2011, 13, 608. (k) Tan, C. K.; Zhou,
L.; Yeung, Y.-Y. Org. Lett. 2011, 13, 2738. (l) Zhou, L.; Chen, J.; Tan,
C. K.; Yeung, Y.-Y. J. Am. Chem. Soc. 2011, 133, 9164. (m) Jaganathan,
A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.; Borhan, B. Angew.
Chem., Int. Ed. 2011, 50, 2593. (n) Lozano, O.; Blessley, G.; Martinez del
Campo, T.; Thompson, A. L.; Giuffredi, G. T.; Bettati, M.; Walker, M.;
Borman, R.; Gouverneur, V. Angew. Chem., Int. Ed. 2011, 50, 8105. (o)
With DBDMH as the halide electrophile, the reac-
tion conditions were further optimized. The results are
summarized in Table 2. Various solvents (CHCl3, DCE,
toluene, CF3CH2OH, CH3CN) were tested, and all led to
the formation of the desired azaspirocyclohexadienone
(entries 1ꢀ6, Table 2). The reaction in CH3CN gave the
best yield (entry 6, Table 2). Elevating the reaction tem-
perature to 0 °C caused a slightly decreased yield (70%,
€
€
Hennecke, U.; Muller, C. H.; Frohlich, R. Org. Lett. 2011, 13, 860. (p)
Huang, D.; Wang, H.; Xue, F.; Guan, H.; Li, L.; Peng, X.; Shi, Y. Org.
Lett. 2011, 13, 6350. (q) Zhang, W.; Liu, N.; Schienebeck, C. M.;
Decloux, K.; Zheng, S.; Werness, J. B.; Tang, W. Chem.;Eur. J.
2012, 18, 7296. (r) Tan, C. K.; Le, C.; Yeung, Y.-Y. Chem. Commun.
2012, 48, 5793. (s) Denmark, S. E.; Burk, M. T. Org. Lett. 2012, 14, 256.
(t) Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 6068.
(u) Chen, J.; Zhou, L.; Tan, C. K.; Yeung, Y.-Y. J. Org. Chem. 2012,
77, 999.
˚
entry 7, Table 2). Then different additives such as 4 A MS,
a Brønsted acid, a base, and KBr (entries 7ꢀ12, Table 2)
(10) Intramolecular halo-C-cyclizations of alkenes using malonate as
the nucleophile have been reported; for account, see: Kitagawa, O.;
Taguchi, T. Synlett 1999, 1191 and reference therein.
Org. Lett., Vol. 14, No. 13, 2012
3527