M
K. Cocq et al.
Account
Synlett
9441. (g) Haley, M. M.; Chase, D. T.; Rose, B.; Fix, A. G.
US9099660, 2015. (h) Listunov, D.; Saffon-Merceron, N.; Joly, E.;
Fabing, I.; Genisson, Y.; Maraval, V.; Chauvin, R. Tetrahedron
2016, 72, 6697.
(11) (a) Cocq, K.; Saffon-Merceron, N.; Poater, A.; Maraval, V.;
Chauvin, R. Synlett 2016, 27, 2105. (b) Zhu, C.; Duhayon, C.;
Saquet, A.; Maraval, V.; Chauvin, R. Can. J. Chem. 2017, 95, 454.
(c) Zhu, C.; Rives, A.; Duhayon, C.; Maraval, V.; Chauvin, R. J. Org.
Chem. 2017, 82, 925. (d) Listunov, D.; Duhayon, C.; Poater, A.;
Mazères, S.; Saquet, A.; Maraval, V.; Chauvin, R. Chem. Eur. J.
2018, 24, 10699.
(12) (a) Lepetit, C.; Zou, C.; Chauvin, R. J. Org. Chem. 2006, 71, 6317.
(b) Zou, C.; Duhayon, C.; Maraval, V.; Chauvin, R. Angew. Chem.
Int. Ed. 2007, 46, 4337.
(13) For n = 6, see: (a) Diercks, D.; Armstrong, J. C.; Boese, R.;
Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1986, 25, 268.
(b) Neena, T. X.; Whitesides, G. M. J. Org. Chem. 1988, 53, 2489.
(c) Boese, R.; Green, J. R.; Mittendorf, J.; Mohler, D. L.; Vollhardt,
K. P. C. Angew. Chem., Int. Ed. Engl. 1992, 31, 1643. (d) Haley, M.
M. Pure Appl. Chem. 2008, 80, 519. (e) Jia, Z.; Li, Y.; Zuao, Z.; Liu,
H.; Huang, C.; Li, Y. Acc. Chem. Res. 2017, 50, 2470. For n = 5, see:
(f) Bunz, U. H. F.; Enkelmann, V.; Rader, J. Organometallics 1993,
12, 4745. (g) Jux, N.; Holczer, K.; Rubin, Y. Angew. Chem., Int. Ed.
Engl. 1996, 35, 1986. (h) Steffen, W.; Laskoski, M.; Morton, J. G.
M.; Bunz, U. H. F. J. Organomet. Chem. 2004, 689, 4345. For n = 4,
see: (i) Bunz, U. H. F.; Enkelmann, V. Angew. Chem., Int. Ed. Engl.
1993, 32, 1653. (j) Laskoski, M.; Morton, J. G. M.; Smith, M. D.;
Bunz, U. H. F. J. Organomet. Chem. 2002, 652, 21. (k) Esselman, B.
J.; McMahon, R. J. J. Phys. Chem. A 2012, 116, 483. (l) Thompson,
S. J.; Lee Emmert, F. III; Slipchenko, L. V. J. Phys. Chem. A 2012,
116, 3194. (m) Burgun, A.; Gendron, F.; Schauer, P. A.; Skelton, B.
W.; Low, P. J.; Costuas, K.; Halet, J.-F.; Bruce, B.; Lapinte, C.
Organometallics 2013, 32, 5015. For n = 4 and 8, see: (n) Yavari,
I.; Jabbari, A.; Samadizadeh, M. J. Chem. Res., Synop. 1999, 152.
For n = 3, see: (o) Domnin, I. N.; Takhistov, V. V.; Ponomarev, D.
A. Eur. Mass Spectrom. 1999, 5, 169. (p) Morton, M. S.; Selegue, J.
P. J. Organomet. Chem. 1999, 578, 133.
(2) (a) A computational advance in this direction has been under-
taken by comparison of ethynylogous OPE[n] and OPP[n], for n =
0–10. For a given -conjugation extent nC (= 6n + 6 for OPP[n],
8n + 6 for OPE[n]), the HOMO–LUMO gap is found always
greater for OPE[(nC–6)/8] than for OPP[(nC–6)/6], becoming
greater than 3.2 eV for nC ≥ 54 (corresponding to OPP[8] and
OPE[6]). The OPE series is therefore definitely softer than the
OPP series vs nC. Calculations for ideal conjugation (under D2h
symmetry constraint) performed at the B3PW91/6-31G(d,p)
level with the program Firefly 8.1.1: Granovsky, A. A. Firefly
Version
8 http://classic.chem.msu.su/gran/firefly/index.html)
which is partially based on the GAMESS (US) source code.
(b) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K.
A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput.
Chem. 1993, 14, 1347; see Supporting Information.
(3) (a) Kuwatani, Y.; Watanabe, N.; Ueda, I. Tetrahedron Lett. 1995,
36, 119. (b) Suzuki, R.; Tsukuda, H.; Watanabe, N.; Kuwatani, Y.;
Ueda, I. Tetrahedron 1998, 54, 2477.
(4) For theoretical studies of carbo-mers, see for example:
(a) Godard, C.; Lepetit, C.; Chauvin, R. Chem. Commun. 2000,
1833. (b) Lepetit, C.; Godard, C.; Chauvin, R. New J. Chem. 2001,
25, 572. (c) Ducere, J.-M.; Lepetit, C.; Lacroix, P. G.; Heully, J.-L.;
Chauvin, R. Chem. Mater. 2002, 14, 3332. (d) Lepetit, C.; Zou, C.;
Chauvin, R. J. Org. Chem. 2006, 71, 6317. (e) Soncini, A.; Fowler,
P. W.; Lepetit, C.; Chauvin, R. Phys. Chem. Chem. Phys. 2008, 10,
957. (f) Chauvin, R.; Lepetit, C.; Maraval, V.; Leroyer, L. Pure
Appl. Chem. 2010, 82, 769. (g) Wodrich, M. D.; Gonthier, J. F.;
Steinmann, S. N.; Corminboeuf, C. J. Phys. Chem. A 2010, 114,
6705. (h) Aspiroz, J. M.; Islas, R.; Moreno, D.; Fernández-Her-
rera, M. A.; Pan, S.; Chattaraj, P. K.; Martínez-Guajardo, G.;
Ugalde, J. M.; Merino, G. J. Org. Chem. 2014, 79, 5463.
(i) Poidevin, C.; Malrieu, J.-P.; Trinquier, G.; Lepetit, C.; Allouti,
F.; Alikhani, M. E.; Chauvin, R. Chem. Eur. J. 2016, 22, 5295.
(5) (a) Rives, A.; Baglai, I.; Malytskyi, V.; Maraval, V.; Saffon-Merce-
ron, N.; Voitenko, Z.; Chauvin, R. Chem. Commun. 2012, 48, 8763.
(b) Rives, A.; Maraval, V.; Saffon-Merceron, N.; Chauvin, R.
Chem. Eur. J. 2012, 18, 14702. (c) Rives, A.; Maraval, V.; Saffon-
Merceron, N.; Chauvin, R. Chem. Eur. J. 2014, 20, 483.
(6) (a) Barthes, C.; Rives, A.; Maraval, V.; Chelain, E.; Brigaud, T.;
Chauvin, R. Fr.-Ukr. J. Chem. 2015, 3, 60. (b) Rives, A.; Baglai, I.;
Barthes, C.; Maraval, V.; Saffon-Merceron, N.; Saquet, A.;
Voitenko, Z.; Volovenko, Y.; Chauvin, R. Chem. Sci. 2015, 6, 1139.
(7) Cocq, K.; Maraval, V.; Saffon-Merceron, N.; Saquet, A.; Poidevin,
C.; Lepetit, C.; Chauvin, R. Angew. Chem. Int. Ed. 2015, 54, 2703.
(8) For references on [N]pericyclynes, see: (a) Scott, L. T.; DeCicco,
G. J.; Hyun, J. L.; Reinhardt, G. J. Am. Chem. Soc. 1983, 105, 7760.
(b) Scott, L. T.; DeCicco, G. J.; Hyun, J. L.; Reinhardt, G. J. Am.
Chem. Soc. 1985, 107, 6546. For references on hexaoxy[6]pericy-
clynes, see: (c) Maurette, L.; Tedeschi, E.; Sermot, E.;
Soleilhavoup, M.; Hussain, F.; Donnadieu, B.; Chauvin, R. Tetra-
hedron 2004, 60, 10077. (d) Leroyer, L.; Zou, C.; Maraval, V.;
Chauvin, R. C. R. Chimie 2009, 12, 412.
(14) Basic calculations of the heterolytic bond dissociation energy
ΔE(R), corresponding to the equation (MeC≡C)2RC–OH
→
(MeC≡C)2RC+ + OH– in the gas phase, show that ∆E(MeC≡C) –
ΔE(Ph) = +3 kcal/mol: ΔE(MeC≡C) = 0.32935 Ha, ΔE(Ph) =
0.32458 Ha, ΔE(Me) = 0.34930 Ha, ΔE(H) = 0.36285 Ha. Calcula-
tions at the B3PW91/6-31G(d,p) level with the program Firefly
8.1.1: see ref. 2a,b.
(15) (a) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207.
(b) McGlinchey, M. J.; Girard, L.; Ruffolo, R. Coord. Chem. Rev.
1995, 143, 331. (c) Melikyan, G. G.; Bright, S.; Monroe, T.;
Hardcastle, K. I.; Ciurash, J. Angew. Chem. Int. Ed. 1998, 37, 161.
(16) Karadakov, P. B. Chem. Phys. Lett. 2016, 646, 190.
(17) Cocq, K.; Saffon-Merceron, N.; Coppel, Y.; Poidevin, C.; Maraval,
V.; Chauvin, R. Angew. Chem. Int. Ed. 2016, 55, 15133.
(18) Saccavini, C.; Tedeschi, C.; Maurette, L.; Sui-Seng, C.; Zou, C.;
Soleilhavoup, M.; Vendier, L.; Chauvin, R. Chem. Eur. J. 2007, 13,
4895.
(19) For the preparation of dibenzoylacetylene 12, see: Zhang, Z. Z.;
Schuster, G. B. J. Am. Chem. Soc. 1989, 111, 7149.
(20) (a) Hrobárik, P.; Hrobáriková, V.; Semak, V.; Kasák, P.; Rakovský,
E.; Polyzos, I.; Fakis, M.; Persephonis, P. Org. Lett. 2014, 16,
6358. (b) Tran, C.; Berqouch, N.; Dhimane, H.; Clermont, G.;
Blanchard-Desce, M.; Ogden, D.; Dalko, P. I. Chem. Eur. J. 2017,
23, 1860.
(9) Chauvin, R. Tetrahedron Lett. 1995, 36, 401.
(21) Belfield, K. D.; Yao, S.; Bondar, M. V. Adv. Polym. Sci. 2008, 213,
97.
(22) Baglai, I.; de Anda-Villa, M.; Barba-Barba, R. M.; Poidevin, C.;
Ramos-Ortíz, G.; Maraval, V.; Lepetit, C.; Saffon-Merceron, N.;
Maldonado, J.-L.; Chauvin, R. Chem. Eur. J. 2015, 21, 14186.
(10) (a) Saccavini, C.; Sui-Seng, C.; Maurette, L.; Lepetit, C.; Soula, S.;
Zou, C.; Donnadieu, B.; Chauvin, R. Chem. Eur. J. 2007, 13, 4914.
(b) Cocq, K.; Maraval, V.; Saffon-Merceron, N.; Chauvin, R. Chem.
Rec. 2015, 15, 347.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–N